首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   696篇
  免费   32篇
  国内免费   5篇
测绘学   14篇
大气科学   29篇
地球物理   190篇
地质学   293篇
海洋学   53篇
天文学   123篇
综合类   2篇
自然地理   29篇
  2022年   5篇
  2021年   12篇
  2020年   12篇
  2019年   19篇
  2018年   21篇
  2017年   25篇
  2016年   32篇
  2015年   15篇
  2014年   31篇
  2013年   38篇
  2012年   25篇
  2011年   43篇
  2010年   27篇
  2009年   41篇
  2008年   38篇
  2007年   35篇
  2006年   37篇
  2005年   22篇
  2004年   26篇
  2003年   17篇
  2002年   15篇
  2001年   9篇
  2000年   13篇
  1999年   8篇
  1998年   10篇
  1997年   10篇
  1996年   6篇
  1995年   6篇
  1994年   8篇
  1993年   6篇
  1992年   6篇
  1991年   4篇
  1990年   6篇
  1989年   4篇
  1988年   5篇
  1987年   3篇
  1986年   7篇
  1985年   6篇
  1984年   12篇
  1983年   5篇
  1982年   5篇
  1981年   6篇
  1979年   3篇
  1976年   5篇
  1971年   3篇
  1970年   4篇
  1969年   2篇
  1964年   2篇
  1956年   2篇
  1920年   2篇
排序方式: 共有733条查询结果,搜索用时 218 毫秒
671.
Rates of generation and growth of the continental crust   总被引:4,自引:1,他引:3  
Models for when and how the continental crust was formed are constrained by estimates in the rates o crustal growth. The record of events preserved in the continental crust is heterogeneous in time with distinctive peaks and troughs of ages for igneous crystallisation, metamorphism, continental margin and mineralisation. For the most part these are global signatures, and the peaks of ages tend to b associated with periods of increased reworking of pre-existing crust, reflected in the Hf isotope ratios o zircons and their elevated oxygen isotope ratios. Increased crustal reworking is attributed to periods o crustal thickening associated with compressional tectonics and the development of supercontinents Magma types similar to those from recent within-plate and subduction related settings appear to hav been generated in different areas at broadly similar times before ~3.0 Ga. It can be difficult to put th results of such detailed case studies into a more global context, but one approach is to consider when plate tectonics became the dominant mechanism involved in the generation of juvenile continental crust The development of crustal growth models for the continental crust are discussed, and a number o models based on different data sets indicate that 65%-70% of the present volume of the continental crus was generated by 3 Ga. Such estimates may represent minimum values, but since ~3 Ga there has been reduction in the rates of growth of the continental crust. This reduction is linked to an increase in th rates at which continental crust is recycled back into the mantle, and not to a reduction in the rates a which continental crust was generated. Plate tectonics results in both the generation of new crust and it destruction along destructive plate margins. Thus, the reduction in the rate of continental crustal growth at ~3 Ga is taken to reflect the period in which plate tectonics became the dominant mechanism b which new continental crust was generated.  相似文献   
672.
Incorporating prior geological knowledge in geophysical process models often meets practical meshing challenges and raises the question of how much detail is to be included in the geometric model. We introduce a strategy to automatically repair and simplify geological maps, geological cross-sections and the associated meshes while preserving elementary consistency rules. To identify features breaking validity and/or the thin features potentially problematic when generating a mesh, we associate an exclusion zone with each model feature (horizon, fault). When these zones overlap, both the connectivity and the geometry of the geological layers are automatically modified. The output model enforces specific practical quality criteria on the model topology and geometry that facilitates the generation of a mesh with lower bounds on minimum angles and minimum local entity sizes. Our strategy is demonstrated on an invalid geological cross-section from a real-case study in the Lorraine coal basin. We further explore the impacts of the model modifications on wave propagation simulation. We show that the differences on the seismograms due to model simplifications are relatively small if the magnitude of simplifications is adapted to the physical problem parameters.  相似文献   
673.
674.
Titanite: A potential solidus barometer for granitic magma systems   总被引:1,自引:1,他引:0  
Constraining crystallization pressure and thus intrusion depth of granites in various geodynamic settings remains challenging, yet important to further our understanding of magma system and crustal evolution. We propose that titanite, which is a common accessory in metaluminous and weakly peraluminous granites, can be used as a barometer if it crystallized in magmatic, near-solidus conditions and in equilibrium with amphibole, plagioclase, K-feldspar, quartz, biotite, and magnetite ± ilmenite. Titanite Al2O3 increases with pressure (P) according to: P (in MPa) = 101.66 × Al2O3 in titanite (in wt%) + 59.013 (R2 = 0.83) with estimated uncertainties of ~±60 to ~±100 MPa for crystallization between ~150 and 400 MPa. We highlight that the current calibration dataset is limited, and that systematic experimental studies are needed to rigorously quantify the relation. The most important use of this empirical barometer will be for rocks in which amphibole is present but significantly altered, or in combination with amphibole barometry, as titanite can be easily dated by LA-ICP-MS.  相似文献   
675.
Microtexture describes the type of particles and their arrangement in matrix samples at scanning electron microscopy scale. Although a microtexture classification exists for micritic limestone, it cannot be directly applied to chalk. This study therefore proposes a classification of chalk microtextures and discusses the origin of microtexture variability. Chalk was sampled at thirteen spatio‐temporal locations along the coastline of northern France (Cenomanian–Santonian). Four criteria are defined to describe, characterize and determine chalk matrix microtexture: (i) mineralogical content; (ii) biogenic fraction; (iii) micritic fraction; and (iv) cement fraction. From these criteria, two major groups are defined: Pure Chalk Microtexture Group, with seven classes, and Impure Chalk Microtexture Group, divided into two subgroups: Argillaceous Microtexture with four classes and Siliceous Microtexture with two classes. Microtexture variability is related both to initial sedimentation and to diagenesis. Sedimentological conditions (for example, climate and distance from shore) affect chalk composition (carbonate content and type of insoluble particles), thus influencing microtexture. Changes in Pure Chalk Microtexture are the result of increasing diagenetic intensity. This classification can also be used to characterize the microtexture of subsurface chalk reservoirs. Reservoir quality depends on the petrophysical and mechanical properties of reservoir rocks, which can be better understood by exploring their sedimentary and diagenetic history, revealed by the study of chalk microtexture variability.  相似文献   
676.
The Aquitanian Coast (France) is a high-energy meso-macrotidal environment exhibiting a highly variable double sandbar system. The inner and the outer bar generally exhibit a bar and rip morphology and persistent crescentic patterns, respectively. In June 2007, an intense five-day field experiment was carried out at Biscarrosse Beach. A large array of sensors was deployed on a well-developed southward-oriented bar and rip morphology. Daily topographic surveys were carried out together with video imaging to investigate beach morphodynamic evolution. During the experiment, offshore significant wave height ranged from 0.5 to 3 m, with a persistent shore-normal angle. This paper identifies two types of behavior of an observed rip current: (1) for low-energy waves, the rip current is active only between low and mid tide with maximum mean rip current velocity reaching 0.8 m/s for an offshore significant wave height (Hs) lower than 1 m; (2) for high-energy waves (Hs≈ 2.5–3 m), the rip current was active over the whole tide cycle with the presence of persistent intense offshore-directed flows between mid and high tide. For both low and high-energy waves, very low-frequency pulsations (15–30 min) of the mean currents are observed on both feeder and rip channels.A persistent slow shoreward migration of the sandbar was observed during the experiment while no significant alongshore migration of the system was measured. Onshore migration during the high-energy waves can be explained by different sediment transport processes such as flow velocity skewness, wave asymmetry or bed ventilation. High-frequency local measurements of the bed evolution show the presence of significant (in the order of 10 cm) fluctuations (in the order of 1 h). These fluctuations, observed for both low- and high-energy waves, are thought to be ripples and megaripples, respectively and may play an important but still poorly understood role in the larger scale morphodynamics. The present dataset improves the knowledge of rip dynamics as well as the morphological response of strongly alongshore non-uniform meso-macrotidal beaches.  相似文献   
677.
678.
The effects of colored dissolved organic matter (CDOM) from freshwater runoff and seasonal cycle of temperature on the dynamic of phytoplankton and zooplankton biomass and production in the Gulf of St. Lawrence (GSL) are studied using a 3-D coupled physical-plankton ecosystem model. Three simulations are conducted: (1) the reference simulation based on Le Fouest et al. (2005), in which light attenuation by CDOM is not considered and maximum growth rate (μmaxμmax) of phytoplankton and zooplankton are not temperature-dependent (REF simulation); (2) light attenuation by CDOM is added to REF simulation (CDOM simulation); and (3) in addition to CDOM, the μmaxμmax of phytoplankton and zooplankton are regulated by temperature (CDOM+TEMP simulation). CDOM simulation shows that CDOM substantially reduces phytoplankton biomass and production in the Lower St. Lawrence Estuary (LSLE), but slightly reduces overall primary production in the GSL. In the LSLE, the spring phytoplankton bloom is delayed from mid-March to mid-April, resulted from light attenuation by CDOM. The CDOM+TEMP simulation shows that the spring phytoplankton bloom in the LSLE is further delayed to July, which is more consistent with observations. Annual primary production is reduced by 33% in CDOM+TEMP simulation from REF and CDOM simulations. Zooplankton production is the same in all three simulations, and export of organic matter to depth is reduced in CDOM+TEMP simulation, suggesting that temperature controlled growth of phytoplankton and zooplankton enhances the coupling between primary production and zooplankton production under the seasonal temperature cycle of the GSL.  相似文献   
679.
Much research has been devoted over the past 30 years to the development of construction materials that can lower the environmental and economic costs of buildings over their entire life by reducing embodied energy, minimizing air conditioning needs and cutting down demolition waste. In this respect, raw earth is an attractive material because it is natural and largely available. In its simplest form, this material consists of a compacted mixture of soil and water which is put in place with the least possible transformation. Raw earth construction has been practised in ancient times but has only recently been rediscovered thanks to modern technology, which has improved fabrication efficiency. If properly manufactured, raw earth exhibits comparable mechanical characteristics and better hygro-thermal properties than concrete or fired bricks. After a brief historical overview, we discuss the advantages of raw earth construction in terms of environmental impact, energy consumption and indoor air quality together with the main obstacles to its wider dissemination. We also review the hydro-thermo-mechanical behaviour of raw earth in the context of the recent geotechnical literature, by examining the dependency of key parameters such as strength, stiffness and moisture retention on: (a) material variables (e.g. particle size and mineralogy), (b) manufacturing variables (e.g. density and stabilization) and (c) environmental variables (e.g. pore suction, ambient humidity and temperature).  相似文献   
680.
For epibiotic or symbiotic marine invertebrates, alternative host species may differ substantially in quality, and under some circumstances such differences in host quality may lead to the evolution of increased host specificity. However, the fitness consequences of alternative hosts for epibiotic or symbiotic marine invertebrates have rarely been quantified. In Southern California, the gastropod Crepidula onyx is often found as an epibiont on either bay mussels (Mytilus galloprovincialis) or cone snails (Conus californicus). These hosts differ greatly in maximum size, with possible effects on size at sex change and final size in Cr. onyx, and thus on fecundity. Further, Cr. onyx on the two hosts differ in shell shape, possibly affecting the size of the ctenidium, which Cr. onyx uses for suspension feeding. We examined these potential effects of host use on fitness components in Cr. onyx. Epibionts on mussels reached much larger average sizes than did those on cone snails; further, epibionts on mussels often completed sex change at much larger sizes than did those on cone snails. On average, mussel epibionts had threefold higher average fecundities than did cone snail epibionts. Although there was a slight difference in shell shape between epibionts on the two host species, there was no difference in the scaling of ctenidium area with body size for Cr. onyx from the two hosts. The large average differences in fecundity in epibionts associated with the two alternative hosts suggests that there may be strong selection on host choice at larval settlement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号