首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   696篇
  免费   32篇
  国内免费   5篇
测绘学   14篇
大气科学   29篇
地球物理   190篇
地质学   293篇
海洋学   53篇
天文学   123篇
综合类   2篇
自然地理   29篇
  2022年   5篇
  2021年   12篇
  2020年   12篇
  2019年   19篇
  2018年   21篇
  2017年   25篇
  2016年   32篇
  2015年   15篇
  2014年   31篇
  2013年   38篇
  2012年   25篇
  2011年   43篇
  2010年   27篇
  2009年   41篇
  2008年   38篇
  2007年   35篇
  2006年   37篇
  2005年   22篇
  2004年   26篇
  2003年   17篇
  2002年   15篇
  2001年   9篇
  2000年   13篇
  1999年   8篇
  1998年   10篇
  1997年   10篇
  1996年   6篇
  1995年   6篇
  1994年   8篇
  1993年   6篇
  1992年   6篇
  1991年   4篇
  1990年   6篇
  1989年   4篇
  1988年   5篇
  1987年   3篇
  1986年   7篇
  1985年   6篇
  1984年   12篇
  1983年   5篇
  1982年   5篇
  1981年   6篇
  1979年   3篇
  1976年   5篇
  1971年   3篇
  1970年   4篇
  1969年   2篇
  1964年   2篇
  1956年   2篇
  1920年   2篇
排序方式: 共有733条查询结果,搜索用时 218 毫秒
681.
The aim of this study is to present a statistics-based Lagrangian nowcasting model to predict intense rainfall convective events based on dual polarization radar parameters. The data employed in this study are from X-band radar collected during the CHUVA-Vale campaign from November 2011 to March 2012 in southeast Brazil. The model was designed to catch the important physical characteristics of storms, such as the presence of supercooled water above 0 °C isotherm, vertical ice crystals in high levels, graupel development in the mixed-phase layer and storm vertical growth, using polarimetric radar in the mixed-phase layer. These parameters are based on different polarimetric radar quantities in the mixed phase, such as negative differential reflectivity (Z DR) and specific differential phase (K DP), low correlation coefficient (ρ hv) and high reflectivity Z h values. Storms were tracked to allow the Lagrangian temporal derivation. The model is based on the estimation of the proportion of radar echo volume in the mixed phase that is likely to be associated with intense storm hydrometeors. Thirteen parameters are used in this probabilistic nowcasting model, which is able to predict the potential for future storm development. The model distinguishes two different categories of storms, intense and non-intense rain cell events by determining how many parameters reach the “intense” storm threshold.  相似文献   
682.
The main content of the new European Water Framework Directive is presented. Within its river basin management approach, a special mention of coastal waters status is made. Among the issues at stake are the setting up of river basin management plans, including coastal waters, and water quality assessment system leading to an harmonized definition of quality objectives and their appropriate indicators. The Rhone-Mediterranean-Corsica Water Master Plan, launched in 1996, is considered to be well fitted to this river basin approach and the necessary tools which go with it. It shows up how a river quality assessment system (SEQ) can be adapted to the coastal waters and how it can progressively lead to an efficient set of publishable environmental and performance indicators. Since planning and implementation are devolved to the lowest appropriate level, a close look is then been given at how such a system can work at the local level through different selected case studies on the French Mediterranean coast. In conclusion, some guidelines are drawn up for future initiatives towards integrated coastal area and river basin management.  相似文献   
683.
Thirteen lines of the CO band near 4.7 μm have been observed on a jovian hot spot at a resolution of 0.045 cm−1. The measured line profiles indicate that the CO mole fraction is 1.0±0.2 ppb around the 6-bar level and is larger in the upper troposphere and/or stratosphere. An external source of CO providing an abundance of 4+3−2×1016 molecules cm−2 is implied by the observations in addition to the amount deposited at high altitude by the Shoemaker-Levy 9 collision. From a simple diffusion model, we estimate that the CO production rate is (1.5-10)×106 molecules cm−2 s−1 assuming an eddy diffusion coefficient around the tropopause between 300 and 1500 cm2 s−1. Precipitation of oxygen atoms from the jovian magnetosphere or photochemistry of water vapor from meteoroidal material can only provide a negligible contribution to this amount. A significant fraction of the CO in Jupiter's upper atmosphere may be formed by shock chemistry due to the infall of kilometer- to subkilometer-size Jupiter family comets. Using the impact rate from Levison et al. (2000, Icarus143, 415-420) rescaled by Bottke et al. (2002, Icarus156, 399-433), this source can provide the observed stratospheric CO only if the eddy diffusion coefficient around the tropopause is 100-300 cm2 s−1. Higher values, ∼700 cm2 s−1, would require an impact rate larger by a factor of 5-10, which cannot be excluded considering uncertainties in the distribution of Jupiter family comets. Such a large rate is indeed consistent with the observed cratering record of the Galilean satellites (Zahnle et al. 1998, Icarus136, 202-222). On the other hand, the ∼1 ppb concentration in the lower troposphere requires an internal source. Revisiting the disequilibrium chemistry of CO in Jupiter, we conclude that rapid vertical mixing can provide the required amount of CO at ∼6 bar for a global oxygen abundance of 0.2-9 times the solar value considering the uncertainties in the convective mixing rate and in the chemical constants.  相似文献   
684.
Metagranodiorite samples from the Brossasco‐Isasca Unit, Dora‐Maira Massif, western Alps, show pseudomorphous and coronitic textures where igneous minerals were partially replaced by ultra‐high pressure (UHP) metamorphic assemblages. The original magmatic paragenesis consisted of quartz, plagioclase, K‐feldspar, biotite and minor phases. During UHP metamorphism, the plagioclase (site P) was replaced by zoisite, jadeite, quartz, K‐feldspar and kyanite, and coronitic reactions developed between biotite and adjacent minerals. At the original igneous biotite–quartz contact (site A), a single corona of poorly zoned garnet is developed, whereas at the biotite–K‐feldspar (site B) and biotite–plagioclase (site C) contacts, composite coronas are formed. Integration of results from petrographic observations, calculations of mineral stoichiometry and thermodynamic calculations of mineral stability has allowed the determination of the metamorphic reactions involved and the estimation of the metamorphic conditions, which reached as high as 24 kbar and 650 °C. Accurate microanalysis by energy‐dispersive spectroscopy (EDS) and statistical analysis of the data allowed us to identify, for the first time in a natural Na‐pyroxene of metagranitoid rocks, the end‐member Ca‐Eskola.  相似文献   
685.
Continuous monitoring of soil CO2 dynamic concentration (which is proportional to the CO2 flux through the soil) was carried out at a peripheral site of Mt. Etna during the period November 1997–September 2000 using an automated station. The acquired data were compared with SO2 flux from the summit craters measured two to three times a week during the same period. The high frequency of data acquisition with both methods allowed us to analyze in detail the time variations of both parameters. Anomalous high values of soil CO2 dynamic concentration always preceded periods of increased flux of plume SO2, and these in turn were followed by periods of summit eruptions. The variations were modeled in terms of gas efflux increase due to magma ascent to shallow depth and its consequent depressurization and degassing. This model is supported by data from other geophysical and volcanological parameters. The rates of increase both of soil CO2 dynamic concentration and of plume SO2 flux are interpreted to be positively correlated both to the velocity of magma ascent within the volcano and to lava effusion rate once magma is erupted at the surface. Low rates of the increase were recorded before the nine-month-long 1999 subterminal eruption. Higher rates of increase were observed before the violent summit eruption of September-November 1999, and the highest rates were observed during shorter and very frequent spike-like anomalies that preceded the sequence of short-lived but very violent summit eruptions that started in late January 2000 and continued until late June of the same year. Furthermore, the time interval between the peaks of CO2 and SO2 in a single sequence of gas anomalies is likely to be controlled by magma ascent velocity.Editorial responsibility: H. Shinohara  相似文献   
686.
Geology-based methods for Probabilistic Seismic Hazard Assessment (PSHA) have been developing in Italy. These methods require information on the geometric, kinematic and energetic parameters of the major seismogenic faults. In this paper, we define a model of 3D seismogenic sources in the central Apennines of Italy. Our approach is mainly structural-seismotectonic: we integrate surface geology data (trace of active faults, i.e. 2D features) with seismicity and subsurface geological–geophysical data (3D approach). A fundamental step is to fix constraints on the thickness of the seismogenic layer and deep geometry of faults: we use constraints from the depth distribution of aftershock zones and background seismicity; we also use information on the structural style of the extensional deformation at crustal scale (mainly from seismic reflection data), as well as on the strength and behaviour (brittle versus plastic) of the crust by rheological profiling. Geological observations allow us to define a segmentation model consisting of major fault structures separated by first-order (kilometric scale) structural-geometric complexities considered as likely barriers to the propagation of major earthquake ruptures. Once defined the 3D fault features and the segmentation model, the step onward is the computation of the maximum magnitude of the expected earthquake (M max). We compare three different estimates of M max: (1) from association of past earthquakes to faults; (2) from 3D fault geometry and (3) from geometrical estimate corrected by earthquake scaling laws. By integrating all the data, we define a model of seismogenic sources (seismogenic boxes), which can be directly used for regional-scale PSHA. Preliminary applications of PSHA indicate that the 3D approach may allow to hazard scenarios more realistic than those previously proposed.  相似文献   
687.
688.
The assessment of the loss potential caused by natural perils is a very important task for all insurance companies working in hazard-prone markets. It has to be based on two crucial items: the frequency of events and the investigation of their effects on the insured portfolio.This article deals with the second aspect, i.e. an evaluation of the insured damage caused by two earthquakes, namely those occurring near Albstadt, Germany, on 3 September 1978, and in central Chile on 3 March 1985. The results of the analysis of the earthquake in central Chile enable the mean damage ratio (damage in relation to the value) to be related to the height and the type of construction of the buildings affected. The Albstadt earthquake data permit an illustration of the effects of the type of subsoil on the mean damage ratio. The damage to individual buildings can be described by a lognormal distribution. Possible applications of these results are mentioned.  相似文献   
689.
Interplanetary observations from Helios 1, Helios 2, and IMP-8 spacecraft during 1976 and 1977, namely the early portion of solar cycle 21, have been used to investigate the latitudinal gradients of the solar wind parameters with respect to the angular displacement from the current sheet inferred from synoptic HAO white-light maps of the solar corona at 1.75 solar radii. A latitudinal belt of ±25 deg around the current sheet has been investigated. Large gradients for solar wind flow speed, proton density and temperature have been found. Smoother gradients were also found for particle flux, kinetic, gravitational and thermal energy density flux. All these gradients revealed to become smoother going towards the solar cycle's maximum. Neither latitudinal nor temporal variations were identified for magnetic and thermal energy density. A remarkable result of this study is that the momentum flux density and the total energy flux density which other authors found to be independent of any longitudinal stream structure were also found to be independent of any latitudinal structure. Moreover, these two parameters did not show any temporal variation during the period of interest.  相似文献   
690.
An extension of the seasonal climate model of R. D. Cess and J. Caldwell (1979, Icarus, 38, 349–357) to Saturn's upper troposphere is presented. The ring-modulated latitudinal dependence of the insolation, the ring thermal emission, the oblateness of the planet, the orbit eccentricity, and the latitudinal variation of the internal heat flux are taken into account. Calculations agree closely with the temperature—latitude profiles retrieved from Voyager IRIS measurements at atmospheric levels located above the 0.2-bar pressure level; they reproduce the observed large-scale hemispheric asymmetry which is then shown to result from the seasonally variable insolation. Aerosol absorption is found to be the dominant source of atmospheric solar heating in the troposphere and the model suggests an aerosol mean unit optical depth around the 0.25-bar level in the equatorial region and around the 0.35-bar level at other latitudes. The model fails to predict the retrieved temperature—latitude profiles below the 0.3-bar level. This discrepancy is attributed to the existence of clouds at these levels which are responsible for an additional far-infrared opacity not taken into account in the temperature retrieval. The cloud-top altitude would be about 0.3 bar except in the 20 to 40°N region where these clouds would be confined below the 0.6-bar level. The poor correlation between infrared measurements and visible images is discussed and a possible model of Saturn's cloud structure is proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号