首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57774篇
  免费   1100篇
  国内免费   833篇
测绘学   1585篇
大气科学   4490篇
地球物理   11559篇
地质学   19713篇
海洋学   5260篇
天文学   13452篇
综合类   165篇
自然地理   3483篇
  2021年   381篇
  2020年   475篇
  2019年   538篇
  2018年   1169篇
  2017年   1085篇
  2016年   1533篇
  2015年   952篇
  2014年   1463篇
  2013年   3006篇
  2012年   1680篇
  2011年   2323篇
  2010年   2000篇
  2009年   2801篇
  2008年   2477篇
  2007年   2415篇
  2006年   2331篇
  2005年   1944篇
  2004年   1858篇
  2003年   1773篇
  2002年   1663篇
  2001年   1471篇
  2000年   1488篇
  1999年   1349篇
  1998年   1283篇
  1997年   1238篇
  1996年   1045篇
  1995年   956篇
  1994年   908篇
  1993年   778篇
  1992年   765篇
  1991年   707篇
  1990年   743篇
  1989年   625篇
  1988年   590篇
  1987年   675篇
  1986年   613篇
  1985年   775篇
  1984年   846篇
  1983年   822篇
  1982年   787篇
  1981年   674篇
  1980年   664篇
  1979年   569篇
  1978年   565篇
  1977年   538篇
  1976年   471篇
  1975年   486篇
  1974年   479篇
  1973年   484篇
  1972年   303篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
High resolution echelle spectroscopic observations taken with the FEROS spectrograph at the 2.2 m telescope ESO confirm the binary nature of the flare M3.5V star LU Vel (GJ 375, RE J0958-462) previously reported by Christian and Mathioudakis (2002). Emission of similar intensity from both components is detected in the Balmer, Na i D1&D2, He i D3, Ca ii H&K, and Ca ii IRT lines. We have determined precise radial velocities by cross correlation with radial velocity standard stars, which have allowed us to obtain for the first time the orbital solution of the system. The binary consists of two near-equal M3.5V components with an orbital period shorter than 2 days. We have analyzed the behaviour of the chromospheric activity indicators (variability and possible flares). In addition, we have determined its rotational velocity and kinematics.  相似文献   
62.
Surface morphology and related issues for nuclei of three comets: Halley, Borrelly and Wild 2, are considered in the paper. Joint consideration of publications and results of our analysis of the comets’ images led to conclusions, partly new, partly repeating conclusions published by other researchers. It was found that typical for all three nuclei is the presence of rather flat areas: floors of craters and other depressions, mesas and terraces. This implies that flattening surfaces or planation is a process typical for the comet nuclei. Planation seems to work through the sublimation-driven slope collapse and retreat. This requires effective sublimation so this process should work only when a comet is close to the Sun and if on the nucleus there are starting slopes, steep and high enough to support the “long-distance” avalanching of the collapsing material. If the surface had no starting slopes, then instead of planation, the formation of pitted-and-hilly surfaces should occur. An example of this could be the mottled terrain of the Borelly nucleus. Both ways of the sublimational evolution on the nucleus surface should lead to accumulation of cometary regolith. The thickness of the degassed regolith is not known, but it is obvious that in surface depressions, including the flat-floor ones, it should be larger compared with nondepression areas. This may have implications for the in situ study of comets by the Deep Impact and Rosetta missions.Our morphological analysis puts constraints on the applicability of the popular “rubble-pile comet nucleus” hypothesis (Weissman, 1986. Are cometery nuclei primordial rubble piles? Nature 320, 242-244.). We believe that the rubble pile hypothesis can be applicable to the blocky Halley nucleus. The Borelly and Wild 2 nuclei also could be rubble piles. But in these cases the “rubbles” have to be either smaller than 30-50 m (a requirement to keep lineament geometry close to ideal), or larger than 1-2 km (a requirement to form the rather extended smooth, flat surfaces of mesa tops and crater floors). Another option is that the Borelly and Wild 2 nuclei are not rubble piles.In relation to surface morphology we suggest that three end-member types of the comet nuclei may exist: (1) impact cratered “pristine” bodies, (2) non-cratered fragments of catastrophic disruption, and (3) highly Sun-ablated bodies. In this threefold classification, the Wild 2 nucleus is partially ablated primarily cratered body. Borrelly is significantly ablated and could be either primarily cratered or not-cratered fragment. Halley is certainly partially ablated but with the available images it is difficult to say if remnants of impact craters do exist on it.Recently published observations and early results of analysis of the Tempel 1 nucleus images taken by Deep Impact mission are in agreement with our conclusions on the processes responsible for the Halley, Borrelly and Wild 2 nuclei morphologies. In particular, we have now more grounds to suggest that decrease in crater numbers and increase of the role of smooth flat surfaces in the sequence Wild 2?Tempel 1?Borelli reflects a progress in the sublimational degradation of the nucleus surface during comet passages close to the Sun.  相似文献   
63.
OSIRIS (OH-Suppressing Infra-Red Integral-field Spectrograph) is a new facility instrument for the Keck Observatory. After seeing first light in February 2005, OSIRIS is currently undergoing commissioning. OSIRIS provides the capability of performing three-dimensional spectroscopy in the near-infrared z, J, H, and K bands at the resolution limit of the Keck II telescope, which is equipped with adaptive optics and a laser guide star. The science case for OSIRIS is summarized, and the instrument and associated data reduction software are described.  相似文献   
64.
Measurements of 18O concentrations in precipitation, soil solution, spring and runoff are used to determine water transit time in the small granitic Strengbach catchment (0·8 km2; 883–1146 m above sea level) located in the Vosges Mountains of northeastern France. Water transit times were calculated by applying the exponential, exponential piston and dispersion models of the FlowPC program to isotopic input (rainfall) and output (spring and stream water) data sets during the period 1989–95. The input function of the model was modified compared with the former version of the model and estimated by a deterministic approach based on a simplified hydrological balance. The fit between observed and calculated output data showed marked improvements compared with results obtained using the initial version of the model. An exponential piston version of the model applied to spring water indicates a 38·5 month mean transit time, which suggests that the volume in the aquifer, expressed in water depth, is 2·4 m. A considerable thickness (>45 m) of fractured bedrock may be involved for such a volume of water to be stored in the aquifer. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
65.
Green Lake Landslide is an ancient giant rock slide in gneiss and granodiorite located in the deeply glaciated Fiordland region of New Zealand. The landslide covers an area of 45 km2 and has a volume of about 27 km3. It is believed to be New Zealand's largest landslide, and possibly the largest landslide of its type on Earth. It is one of 39 known very large (106–107 m3) and giant (≥108 m3) postglacial landslides in Fiordland discussed in the paper. Green Lake Landslide resulted in the collapse of a 9 km segment of the southern Hunter Mountains. Slide debris moved up to 2.5 km laterally and 700 m vertically, and formed a landslide dam about 800 m high, impounding a lake about 11 km long that was eventually infilled with sediments. Geomorphic evidence supported by radiocarbon dating indicates that Green Lake Landslide probably occurred 12 000–13 000 years ago, near the end of the last (Otira) glaciation. The landslide is described, and its geomorphic significance, age, failure mechanism, cause, and relevance in the region are discussed, in relation to other large landslides and recent earthquake-induced landslides in Fiordland. The slope failure occurred on a low-angle fault zone undercut by glacial erosion, and was probably triggered by strong shaking (MM IX–X) associated with a large (≥ M 7.5–8) earthquake, on the Alpine Fault c. 80 km to the northwest. Geology was a major factor that controlled the style and size of Green Lake landslide, and in that respect it is significantly different from most other gigantic landslides. Future large earthquakes on the Alpine Fault in Fiordland are likely to trigger more very large and giant landslides across the region, causing ground damage and devastation on a scale that has not occurred during the last 160 years, with potentially disastrous effects on towns, tourist centres, roads, and infrastructure. The probability of such an event occurring within the next 50 years may be as high as 45%.  相似文献   
66.
Photographic spectra of SN1987A in the LMC have been obtained from 1987 February 25 to 1988 June 30. Microdensitometer tracings of these have been reduced to intensity and corrections for instrumental response have been applied to the spectra. This paper presents these data in an atlas format, discusses the reduction procedures in detail, and presents radial velocity measurements of selected lines in the spectra  相似文献   
67.
An introduction to Maslov's asymptotic method   总被引:3,自引:0,他引:3  
Summary. Familiar concepts such as asymptotic ray theory and geometrical spreading are now recognized as an asymptotic form of a more general asymptotic solution to the non-separable wave equation. In seismology, the name Maslov asymptotic theory has been attached to this solution. In its simplest form, it may be thought of as a justification of disc-ray theory and it can be reduced to the WKBJ seismogram. It is a uniformly valid asymptotic solution, though. The method involves properties of the wavefronts and ray paths of the wave equation which have been established for over a century. The integral operators which build on these properties have been investigated only comparatively recently. These operators are introduced very simply by appealing to the asymptotic Fourier transform of Ziolkowski & Deschamps. This leads quite naturally to the result that phase functions in different domains of the spatial Fourier transform are related by a Legendre transformation. The amplitude transformation can also be inferred by this method. Liouville's theorem (the incompressibility of a phase space of position and slowness) ensures that it is always possible to obtain a uniformly asymptotic solution. This theorem can be derived by methods familiar to seismologists and which do not rely on the traditional formalism of classical mechanics. It can also be derived from the sympletic property of the equations of geometrical spreading and canonical transformations in general. The symplectic property plays a central role in the theory of high-frequency beams in inhomogeneous media.  相似文献   
68.
The Bloomington meteorite, a 67.8 gram veined, brecciated chondrite, fell during the summer of 1938 in Bloomington, Illinois. Its olivine, orthopyroxene and metal compositions (fo69, en74 and Fe52 Ni48 respectively) and its texture identify it as a brecciated LL6 chondrite of shock facies d. Shock melt glasses occur in Bloomington as sparse melt pockets and veins in clasts and as isolated masses in the black, clast-rich matrix. The vein glasses chemically resemble bulk LL-group chondrites and thus appear to reflect total melting of the host meteorite. The melt pocket and matrix glasses, like those described previously in L-group chondrites, have more varied compositions and are typically enriched in normative plagioclase. All glasses that we analyzed in Bloomington have FeO/MgO and Na/Al ratios similar to those of LL-group chondrites, indicating that melting of this meteorite involved neither a significant change in the oxidation state of iron nor loss of sodium to a vapor phase. Bloomington is a monomict breccia whose components formed in place as a result of a single episode of shock and attendant melting.  相似文献   
69.
Laser-induced plasmas in various gas mixtures were used to simulate lightning in other planetary atmospheres. This method of simulation has the advantage of producing short-duration, high-temperature plasmas free from electrode contamination. The laser-induced plasma discharges in air are shown to accurately simulate terrestrial lightning and can be expected to simulate lightning spectra in other planetary atmospheres. Spectra from 240 to 880 nm are presented for simulated lightning in the atmospheres of Venus, Earth, Jupiter, and Titan. The spectra of lightning on the other giant planets are expected to be similar to that of Jupiter because the atmospheres of these planets are composed mainly of hydrogen and helium. The spectra of Venus and Titan show substantial amounts of radiation due to the presence of carbon atoms and ions and show CN Violet radiation. Although small amounts of CH4 and NH3 are present in the Jovian atmosphere, only emission from hydrogen and helium is observed. Most differences in the spectra can be understood in terms of the elemental ratios of the gas mixtures. Consequently, observations of the spectra of lightning on other planets should provide in situ estimates of the atmospheric and aerosol composition in the cloud layers in which lightning is occuring. In particular, the detection of inert gases such as helium should be possible and the relative abundance of these gases compared to major constituents might be determined.  相似文献   
70.
Following the kinetic equation approach, we study the flare processes in blazars in the optical-to-X-ray region, considering energy dependent acceleration time-scale of electrons and synchrotron and adiabatic cooling as their dominant energy loss processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号