首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116322篇
  免费   2649篇
  国内免费   1794篇
测绘学   3109篇
大气科学   9124篇
地球物理   24127篇
地质学   40234篇
海洋学   10326篇
天文学   25211篇
综合类   473篇
自然地理   8161篇
  2021年   834篇
  2020年   960篇
  2019年   1052篇
  2018年   2316篇
  2017年   2240篇
  2016年   2794篇
  2015年   1938篇
  2014年   2711篇
  2013年   5806篇
  2012年   3252篇
  2011年   4490篇
  2010年   3886篇
  2009年   5307篇
  2008年   4743篇
  2007年   4504篇
  2006年   4442篇
  2005年   4001篇
  2004年   4028篇
  2003年   3663篇
  2002年   3252篇
  2001年   2869篇
  2000年   2817篇
  1999年   2443篇
  1998年   2429篇
  1997年   2359篇
  1996年   2066篇
  1995年   1932篇
  1994年   1756篇
  1993年   1629篇
  1992年   1534篇
  1991年   1393篇
  1990年   1582篇
  1989年   1396篇
  1988年   1287篇
  1987年   1525篇
  1986年   1349篇
  1985年   1659篇
  1984年   1923篇
  1983年   1807篇
  1982年   1680篇
  1981年   1564篇
  1980年   1422篇
  1979年   1332篇
  1978年   1369篇
  1977年   1262篇
  1976年   1191篇
  1975年   1138篇
  1974年   1164篇
  1973年   1183篇
  1972年   723篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
22.
23.
24.
25.
The Cassini spacecraft, en route to Saturn, passed close to Jupiter while the Galileo spacecraft was completing its 28th and 29th orbits of Jupiter, thus offering a unique opportunity for direct study of the solar wind-Jovian interaction. Here evidence is given of response of the Jovian magnetopause and bow shock positions to changes of the north-south component of the solar wind magnetic field, a phenomenon long known to occur in equivalent circumstances at Earth. The period analyzed starts with the passage over Cassini of an interplanetary shock far upstream of Jupiter. The shock's arrival at Galileo on the dusk-flank of the magnetosphere caused Galileo to exit into the solar wind. Using inter-spacecraft timing based on the time delay established from the shock arrival at each spacecraft, we point out that Galileo's position with respect to the Jovian bow shock appears to correlate with changes in the disturbed north-south reversing field seen behind the shock. We specifically rule out the alternative of changes in the shape of the bow shock with rotations of the interplanetary magnetic field as the cause.  相似文献   
26.
27.
28.
29.
Abstract— The Vredefort Granophyre represents impact melt that was injected downward into fractures in the floor of the Vredefort impact structure, South Africa. This unit contains inclusions of country rock that were derived from different locations within the impact structure and are predominantly composed of quartzite, feldspathic quartzite, arkose, and granitic material with minor proportions of shale and epidiorite. Two of the least recrystallized inclusions contain quartz with single or multiple sets of planar deformation features. Quartz grains in other inclusions display a vermicular texture, which is reminiscent of checkerboard feldspar. Feldspars range from large, twinned crystals in some inclusions to fine‐grained aggregates that apparently are the product of decomposition of larger primary crystals. In rare inclusions, a mafic mineral, probably biotite or amphibole, has been transformed to very fine‐grained aggregates of secondary phases that include small euhedral crystals of Fe‐rich spinel. These data indicate that inclusions within the Vredefort Granophyre were exposed to shock pressures ranging from <5 to 8–30 GPa. Many of these inclusions contain small, rounded melt pockets composed of a groundmass of devitrified or metamorphosed glass containing microlites of a variety of minerals, including K‐feldspar, quartz, augite, low‐Ca pyroxene, and magnetite. The composition of this devitrified glass varies from inclusion to inclusion, but is generally consistent with a mixture of quartz and feldspar with minor proportions of mafic minerals. In the case of granitoid inclusions, melt pockets commonly occur at the boundaries between feldspar and quartz grains. In metasedimentary inclusions, some of these melt pockets contain remnants of partially melted feldspar grains. These melt pockets may have formed by eutectic melting caused by inclusion of these fragments in the hot (650 to 1610 °C) impact melt that crystallized to form the Vredefort Granophyre.  相似文献   
30.
Abstract— It has now been about a decade since the first demonstrations that hypervelocity particles could be captured, partially intact, in aerogel collectors. But the initial promise of a bonanza of partially‐intact extraterrestrial particles, collected in space, has yet to materialize. One of the difficulties that investigators have encountered is that the location, extraction, handling and analysis of very small (10 μm and less) grains, which constitute the vast majority of the captured particles, is challenging and burdensome. Furthermore, current extraction techniques tend to be destructive over large areas of the collectors. Here we describe our efforts to alleviate some of these difficulties. We have learned how to rapidly and efficiently locate captured particles in aerogel collectors, using an automated microscopic scanning system originally developed for experimental nuclear astrophysics. We have learned how to precisely excavate small access tunnels and trenches using an automated micromanipulator and glass microneedles as tools. These excavations are only destructive to the collector in a very small area—this feature may be particularly important for excavations in the precious Stardust collectors. Using actuatable silicon microtweezers, we have learned how to extract and store “naked” particles—essentially free of aerogel—as small as 3 μm in size. We have also developed a technique for extracting particles, along with their terminal tracks, still embedded in small cubical aerogel blocks. We have developed a novel method for storing very small particles in etched nuclear tracks. We have applied these techniques to the extraction and storage of grains captured in aerogel collectors (Particle Impact Experiment, Orbital Debris Collector Experiment, Comet‐99) in low Earth orbit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号