首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   553篇
  免费   32篇
  国内免费   6篇
测绘学   13篇
大气科学   36篇
地球物理   124篇
地质学   220篇
海洋学   59篇
天文学   76篇
综合类   1篇
自然地理   62篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   14篇
  2019年   14篇
  2018年   13篇
  2017年   19篇
  2016年   25篇
  2015年   26篇
  2014年   19篇
  2013年   24篇
  2012年   28篇
  2011年   38篇
  2010年   42篇
  2009年   39篇
  2008年   25篇
  2007年   32篇
  2006年   24篇
  2005年   26篇
  2004年   28篇
  2003年   20篇
  2002年   13篇
  2001年   8篇
  2000年   14篇
  1999年   7篇
  1998年   15篇
  1997年   8篇
  1996年   4篇
  1995年   4篇
  1994年   6篇
  1993年   8篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   4篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
排序方式: 共有591条查询结果,搜索用时 281 毫秒
51.
On the passive margin of the Nile deep-sea fan, the active Cheops mud volcano (MV; ca. 1,500 m diameter, ~20–30 m above seafloor, 3,010–3,020 m water depth) comprises a crater lake with hot (up to ca. 42 °C) methane-rich muddy brines in places overflowing down the MV flanks. During the Medeco2 cruise in fall 2007, ROV dives enabled detailed sampling of the brine fluid, bottom lake sediments at ca. 450 m lake depth, sub-surface sediments from the MV flanks, and carbonate crusts at the MV foot. Based on mineralogical, elemental and stable isotope analyses, this study aims at exploring the origin of the brine fluid and the key biogeochemical processes controlling the formation of these deep-sea authigenic carbonates. In addition to their patchy occurrence in crusts outcropping at the seafloor, authigenic carbonates occur as small concretions disseminated within sub-seafloor sediments, as well as in the bottom sediments and muddy brine of the crater lake. Aragonite and Mg-calcite dominate in the carbonate crusts and in sub-seafloor concretions at the MV foot, whereas Mg-calcite, dolomite and ankerite dominate in the muddy brine lake and in sub-seafloor concretions near the crater rim. The carbonate crusts and sub-seafloor concretions at the MV foot precipitated in isotopic equilibrium with bottom seawater temperature; their low δ13C values (–42.6 to –24.5‰) indicate that anaerobic oxidation of methane was the main driver of carbonate precipitation. By contrast, carbonates from the muddy lake brine, bottom lake concretions and crater rim concretions display much higher δ13C (up to –5.2‰) and low δ18O values (down to –2.8‰); this is consistent with their formation in warm fluids of deep origin characterized by 13C-rich CO2 and, as confirmed by independent evidence, slightly higher heavy rare earth element signatures, the main driver of carbonate precipitation being methanogenesis. Moreover, the benthic activity within the seafloor sediment enhances aerobic oxidation of methane and of sulphide that promotes carbonate dissolution and gypsum precipitation. These findings imply that the coupling of carbon and sulphur microbial reactions represents the major link for the transfer of elements and for carbon isotope fractionation between fluids and authigenic minerals. A new challenge awaiting future studies in cold seep environments is to expand this work to oxidized and reduced sulphur authigenic minerals.  相似文献   
52.
Tectonic studies near major fault zones often reveal multiple tectonic regimes. Do these regimes indicate multiphase tectonism with distinct episodes, or do they reflect single‐phase tectonism with time‐space perturbations along lithospheric weakness zones? Based on tectonic analyses in Flateyjarskagi, North Iceland, we reconstruct the late Cenozoic tectonic regimes related to right‐lateral transform motion along the Tjörnes Fracture Zone, which connects the Kolbeinsey Ridge and the North Iceland Rift. Rifting and transform motion have induced eight normal and strike‐slip regimes, four of which are inconsistent with the overall kinematics (as a probable result of stress drop, elastic rebound and dyke injection). For the consistent regimes, contrasting angles between extension and transform trends reflect repeated changes from moderate (25°) to very low mechanical coupling (85°) across the transform zone. Thus, the tectonic regimes need not be interpreted in terms of numerous tectonic episodes but rather as a consequence of variable coupling across the transform zone.  相似文献   
53.
The influence of a hedge surrounding bottomland on soil‐water movement along the hillslope was studied on a plot scale for 28 months. The study was based on the comparison of two transects, one with a hedge, the other without, using mainly a dense grid of tensiometers. The influence of the bottomland hedge was located in the area where tree roots were developed, several metres upslope from the hedge, and could be observed both in the saturated and non‐saturated zone, from May to December. The hedge induced a high rate of soil drying, because of the high evaporative capacity of the trees. We evaluated that water uptake by the hedge during the growing season was at least 100 mm higher than without a hedge. This increased drying rate led to a delayed rewetting of the soils upslope from the hedge in autumn, of about 1 month compared with the situation without a hedge. Several consequences of this delayed rewetting are expected: a delay in the return of subsurface transfer from the hillslope to the riparian zone, a buffering effect of hedges on floods, already observed at the catchment scale, and an increased residence time of pollutants. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
54.
Meteorite fusion crust formation is a brief event in a high‐temperature (2000–12,000 K) and high‐pressure (2–5 MPa) regime. We studied fusion crusts and bulk samples of 10 ordinary chondrite falls and 10 ordinary chondrite finds. The fusion crusts show a typical layering and most contain vesicles. All fusion crusts are enriched in heavy Fe isotopes, with δ56Fe values up to +0.35‰ relative to the solar system mean. On average, the δ56Fe of fusion crusts from finds is +0.23‰, which is 0.08‰ higher than the average from falls (+0.15‰). Higher δ56Fe in fusion crusts of finds correlate with bulk chondrite enrichments in mobile elements such as Ba and Sr. The δ56Fe signature of meteorite fusion crusts was produced by two processes (1) evaporation during atmospheric entry and (2) terrestrial weathering. Fusion crusts have either the same or higher δ18O (0.9–1.5‰) than their host chondrites, and the same is true for Δ17O. The differences in bulk chondrite and fusion crust oxygen isotope composition are explained by exchange of oxygen between the molten surface of the meteorites with the atmosphere and weathering. Meteorite fusion crust formation is qualitatively similar to conditions of chondrule formation. Therefore, fusion crusts may, at least to some extent, serve as a natural analogue to chondrule formation processes. Meteorite fusion crust and chondrules exhibit a similar extent of Fe isotope fractionation, supporting the idea that the Fe isotope signature of chondrules was established in a high‐pressure environment that prevented large isotope fractionations. The exchange of O between a chondrule melt and an 16O‐poor nebula as the cause for the observed nonmass dependent O isotope compositions in chondrules is supported by the same process, although to a much lower extent, in meteorite fusion crusts.  相似文献   
55.
Scientific momentum is increasing behind efforts to develop geoengineering options, but it is widely acknowledged that the challenges of geoengineering are as much political and social as they are technical. Legislators are looking for guidance on the governance of geoengineering research and possible deployment. The Oxford Principles are five high-level principles for geoengineering governance. This article explains their intended function and the core societal values which they attempt to capture. Finally, it proposes a framework for their implementation in a flexible governance architecture through the formulation of technology-specific research protocols.  相似文献   
56.
57.
58.
The eruptive history of the Tequila volcanic field (1600 km2) in the western Trans-Mexican Volcanic Belt is based on 40Ar/39Ar chronology and volume estimates for eruptive units younger than 1 Ma. Ages are reported for 49 volcanic units, including Volcán Tequila (an andesitic stratovolcano) and peripheral domes, flows, and scoria cones. Volumes of volcanic units 1 Ma were obtained with the aid of field mapping, ortho aerial photographs, digital elevation models (DEMs), and ArcGIS software. Between 1120 and 200 kyrs ago, a bimodal distribution of rhyolite (~35 km3) and high-Ti basalt (~39 km3) dominated the volcanic field. Between 685 and 225 kyrs ago, less than 3 km3 of andesite and dacite erupted from more than 15 isolated vents; these lavas are crystal-poor and show little evidence of storage in an upper crustal chamber. Approximately 200 kyr ago, ~31 km3 of andesite erupted to form the stratocone of Volcán Tequila. The phenocryst assemblage of these lavas suggests storage within a chamber at ~2–3 km depth. After a hiatus of ~110 kyrs, ~15 km3 of andesite erupted along the W and SE flanks of Volcán Tequila at ~90 ka, most likely from a second, discrete magma chamber located at ~5–6 km depth. The youngest volcanic feature (~60 ka) is the small andesitic volcano Cerro Tomasillo (~2 km3). Over the last 1 Myr, a total of 128±22 km3 of lava erupted in the Tequila volcanic field, leading to an average eruption rate of ~0.13 km3/kyr. This volume erupted over ~1600 km2, leading to an average lava accumulation rate of ~8 cm/kyr. The relative proportions of lava types are ~22–43% basalt, ~0.4–1% basaltic andesite, ~29–54% andesite, ~2–3% dacite, and ~18–40% rhyolite. On the basis of eruptive sequence, proportions of lava types, phenocryst assemblages, textures, and chemical composition, the lavas do not reflect the differentiation of a single (or only a few) parental liquids in a long-lived magma chamber. The rhyolites are geochemically diverse and were likely formed by episodic partial melting of upper crustal rocks in response to emplacement of basalts. There are no examples of mingled rhyolitic and basaltic magmas. Whatever mechanism is invoked to explain the generation of andesite at the Tequila volcanic field, it must be consistent with a dominantly bimodal distribution of high-Ti basalt and rhyolite for an 800 kyr interval beginning ~1 Ma, which abruptly switched to punctuated bursts of predominantly andesitic volcanism over the last 200 kyrs.Electronic Supplementary Material Supplementary material is available in the online version of this article at Editorial responsility: J. Donnelly-NolanThis revised version was published online in January 2005 with corrections to Tables 1 and 3.An erratum to this article can be found at  相似文献   
59.
Twenty granodioritic rocks and one amphibolitic enclave of the “basement” of the Suomussalmi-Kuhmo Archaean (2.65 Ga) greenstone belts (central-eastern Finland), have been chosen together with one greenstone sample for Rb-Sr and Sm-Nd geochronological and isotopic studies.The granitoïd rocks are subdivided into three groups: two generations of grey gneisses and a post-belt augen gneiss. The Rb-Sr ages of the first and second generation of grey gneisses are 2.86 ± 0.09 and 2.62 ± 0.07 Ga, respectively. These results are corroborated by Sm-Nd data. The post-belt augen gneiss gives an age of 2.51 ± 0.11 Ga. The results show that the two generations of grey gneisses, the greenstone belts and the post-greenstone augen gneiss, were developed over a period > 350 Ma. The two generations of grey gneisses show identical ISr values (0.7023 ± 8 and 0.7024 ± 6) which contrast with that of the augen gneiss (0.7049 ± 8). The low ISr and the near-chondritic ?TCHUR values indicate that the grey gneisses cannot derived from much older continental materials. Trace element studies suggest that these grey gneisses have had a multi-stage development. The augen gneiss with a moderately high ISr is likely to be derived from a granodiorite originated by partial melting of older sialic crust. The more probable parent rock seems to be the first generation grey gneisses. The ISr and average Rb/Sr values preclude the greenstone belt and the second generation of grey gneisses as the protolith.  相似文献   
60.
Recent studies of the Baltic clam Macoma balthica (L.) from the southern Baltic (the Gulf of Gdansk) have revealed striking morphological, histological and cytogenetic features. Strong deformation of the shell, including elongation of the posterior end and the appearance of an easily visible flexure in this part, has been recorded. The population contribution of the deformed blunt shelled ("irregular") clams ranged from 0% to 65% and tended to increase with depth. The morphologically "irregular" clams had higher accumulated tissue concentrations of trace metals (As, Ag, Cd, Pb, Cu and Zn), indicating a different metal handling ability. Adverse conditions in deeper water regions of the Gulf (e.g. hypoxia, hydrogen sulphide, elevated bioavailability of contaminants) have been suggested as inducers of the phenotypical changes (morphological deformation) in part of the population and, in parallel, of the specific physiological adaptations that result in higher metal accumulation in the "irregular" clams. Cytogenetic and histological analyses showed the presence of tumours in gill cells and digestive system of the affected clams, the prevalence of disseminated neoplasia ranging from 0% to 94% depending on the site. The disease was manifested by a modified karyotype (i.e. an abnormal number and morphology of chromosomes), a higher activity of nucleolar organizer regions (AgNORs), and tissue lesions (enlarged cells, actively proliferative with pleomorphic nuclei). Bottom sediments showed acute toxicity and have been proposed as a source of an initialising carcinogenic factor. However, none of the ecotoxicological studies provided was successful in the clear demonstration of a single (or multifactorial) agent that can account for the disseminated neoplasia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号