首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   2篇
  国内免费   2篇
大气科学   5篇
地球物理   2篇
地质学   4篇
自然地理   3篇
  2022年   2篇
  2020年   2篇
  2018年   2篇
  2016年   2篇
  2015年   2篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
11.
For water supply, navigational, ecological protection or water quality control purposes, there is a great need in knowing the likelihood of the river level falling below a certain threshold. Ensemble streamflow prediction (ESP) based on simulations of deterministic hydrologic models is widely used to assess this likelihood. Raw ESP results can be biased in both the ensemble means and the spreads. In this study, we applied a modified general linear model post‐processor (GLMPP) to correct these biases. The modified GLMPP is built on the basis of regression of simulated and observed streamflow calculated on the basis of canonical events, instead of the daily values as is carried out in the original GLMPP. We conducted the probabilistic analysis of post‐processed ESP results falling below pre‐specified low‐flow levels at seasonal time scale. Raw ESP forecasts from the 1980 to 2006 periods by four different land surface models (LSMs) in eight large river basins in the continental USA are included in the analysis. The four LSMs are Noah, Mosaic, variable infiltration capacity and Sacramento models. The major results from this study are as follows: (1) a modified GLMPP was proposed on the basis of canonical events; (2) post‐processing can improve the accuracy and reduce the uncertainty of hydrologic forecasts; (3) post‐processing can help deal with the effect of human activity; and (4) raw simulation results from different models vary greatly in different basins. However, post‐processing can always remove model biases under different conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
12.
The impact of citric acid on the ability of Solanum nigrum L. to accumulate heavy metals and on its antioxidant enzyme activity were investigated to further elucidate the effect of chelation on the heavy metal uptake and antioxidative defense in plants under conditions of heavy metal pollution. In the presence of multiple metal contaminants (Cd and Pb), citric acid treatment can significantly enhance the Cd (10–30%) and Pb (10–20%) accumulation in S. nigrum when compared to non-citric acid-treated controls; with this enhanced accumulation, S. nigrum becomes a hyperaccumulator. However, citric acid treatment only slightly influences on the increase of S. nigrum biomass. Furthermore, the combined stress of Pb and Cd resulted in a decrease in S. nigrum photorespiration; the rate of carbon dioxide fixation was restored with the application of citric acid. In addition, the presence of Cd and Pb in the soil led to disturbances in the antioxidative responses of S. nigrum; endogenous superoxide dismutase activity was approximately 3–4 times higher in the leaves than in the roots, and guaiacol peroxidase activity in the leaves was only slightly affected. It was also observed that CA increased the malondialdehyde content and total acid soluble thiol content in the presence of elevated Cd and Pb concentrations in the soil. Moreover, the combined stress of Cd and Pb resulted in progressive decrease in total glutathione and significant increase in root phytochelatins as the heavy metal concentration increased. The application of citric acid improved the mechanisms of antioxidative response and phytoextraction in S. nigrum; this improvement resulted from an increase in the solubility of heavy metals in the soil, which alleviated the metal toxicity. Therefore, citric acid could be involved in the expression of specific proteins or defense-related enzymes.  相似文献   
13.
Regional climate models (RCMs) participating in the Coordinated Regional Downscaling Experiment (CORDEX) have been widely used for providing detailed climate change information for specific regions under different emissions scenarios. This study assesses the effects of three common bias correction methods and two multi-model averaging methods in calibrating historical (1980?2005) temperature simulations over East Asia. Future (2006?49) temperature trends under the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios are projected based on the optimal bias correction and ensemble averaging method. Results show the following: (1) The driving global climate model and RCMs can capture the spatial pattern of annual average temperature but with cold biases over most regions, especially in the Tibetan Plateau region. (2) All bias correction methods can significantly reduce the simulation biases. The quantile mapping method outperforms other bias correction methods in all RCMs, with a maximum relative decrease in root-mean-square error for five RCMs reaching 59.8% (HadGEM3-RA), 63.2% (MM5), 51.3% (RegCM), 80.7% (YSU-RCM) and 62.0% (WRF). (3) The Bayesian model averaging (BMA) method outperforms the simple multi-model averaging (SMA) method in narrowing the uncertainty of bias-corrected results. For the spatial correlation coefficient, the improvement rate of the BMA method ranges from 2% to 31% over the 10 subregions, when compared with individual RCMs. (4) For temperature projections, the warming is significant, ranging from 1.2°C to 3.5°C across the whole domain under the RCP8.5 scenario. (5) The quantile mapping method reduces the uncertainty over all subregions by between 66% and 94%.  相似文献   
14.
Wu  Yi  Miao  Chiyuan  Duan  Qingyun  Shen  Chenwei  Fan  Xuewei 《Climate Dynamics》2020,55(9-10):2615-2629

A new bias-corrected, statistically downscaled product, the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset, has been developed and released to help in understanding climate change at local to regional scales. Here, we evaluate the performance of the NEX-GDDP data in simulating daily maximum temperature (TX) and daily minimum temperature (TN) in the historical period 1961–2005 over China at national and regional scales. Projected future changes in TX and TN are assessed under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 emissions scenarios. Results show that the NEX-GDDP data can capture the basic spatial patterns of TX and TN, but these results underestimate the warming trends of TX and TN from 1961 to 2005 over China. The largest biases are found in western China due to its complex terrain conditions; these biases are 2.33 and 2.21 times larger than those found in eastern China for TX and TN, respectively. The climate projections show that the difference in uncertainties is small between the east and the west, and higher warming changes correspond to greater uncertainties. The increasing trends under the RCP8.5 are 2.22 and 2.31 times the size found under the RCP4.5 by the end of the twenty-first century for TX and TN, respectively. The Tibetan plateau has the fastest warming trend under the two scenarios.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号