首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1779篇
  免费   98篇
  国内免费   21篇
测绘学   71篇
大气科学   134篇
地球物理   424篇
地质学   567篇
海洋学   127篇
天文学   373篇
综合类   4篇
自然地理   198篇
  2021年   41篇
  2020年   34篇
  2019年   49篇
  2018年   57篇
  2017年   44篇
  2016年   58篇
  2015年   58篇
  2014年   63篇
  2013年   106篇
  2012年   71篇
  2011年   84篇
  2010年   74篇
  2009年   107篇
  2008年   90篇
  2007年   82篇
  2006年   90篇
  2005年   89篇
  2004年   92篇
  2003年   69篇
  2002年   66篇
  2001年   49篇
  2000年   43篇
  1999年   39篇
  1998年   43篇
  1997年   17篇
  1996年   16篇
  1995年   20篇
  1994年   13篇
  1993年   13篇
  1992年   10篇
  1991年   14篇
  1990年   6篇
  1989年   14篇
  1988年   18篇
  1987年   18篇
  1986年   14篇
  1985年   10篇
  1984年   17篇
  1983年   12篇
  1982年   4篇
  1981年   10篇
  1980年   14篇
  1979年   6篇
  1978年   15篇
  1976年   3篇
  1975年   3篇
  1974年   5篇
  1973年   4篇
  1972年   5篇
  1970年   4篇
排序方式: 共有1898条查询结果,搜索用时 15 毫秒
41.
We present evidence for a decrease in the magnitude of Tharsis-circumferential compressive stress during the Late Hesperian to the Middle Amazonian based on chronologic changes in the predominant style of faulting in southern Amazonis Planitia. Using high-resolution MOLA topography, we identify a population of strike-slip faults that exhibit Middle Amazonian-aged displacements of regional chrono-stratigraphic units. These strike-slip faults are adjacent to an older population of previously documented Late Hesperian-aged thrust faults (wrinkle ridges). Along-strike orientations of these thrust and strike-slip faults reveal the Tharsis-radial stress to be the area's most compressive remote principal stress and that this stress orientation and magnitude persisted throughout the Late Hesperian to the Middle Amazonian. We show that the change in the predominant style of faulting from thrust faulting to strike-slip faulting during this time requires a decrease of the Tharsis-circumferential compressive stress to a magnitude less than lithostatic load, with negligible change in stress orientation.  相似文献   
42.
Displacement-length (D/L)scaling relations for normal and thrust faults from Mars, and thrust faults from Mercury, for which sufficiently accurate measurements are available, are consistently smaller than terrestrial D/L ratios by a factor of about 5, regardless of fault type (i.e. normal or thrust). We demonstrate that D/L ratios for faults scale, to first order, with planetary gravity. In particular, confining pressure modulates: (1) the magnitude of shear driving stress on the fault; (2) the shear yield strength of near-tip rock; and (3) the Young's (or shear) modulus of crustal rock. In general, all three factors decrease with gravity for the same rock type and pore-pressure state (e.g. wet conditions). Faults on planets with lower surface gravities, such as Mars and Mercury, demonstrate systematically smaller D/L ratios than faults on larger planets, such as Earth. Smaller D/L ratios of faults on Venus and the Moon are predicted by this approach, and we infer still smaller values of D/L ratio for faults on icy satellites in the outer solar system. Collection of additional displacement-length and down-dip height data from terrestrial normal, strike-slip, and thrust faults, located within fold-and-thrust belts, plate margins, and continental interiors, is required to evaluate the influence of fault shape and progressive deformation on the scaling relations for faults from Earth and elsewhere.  相似文献   
43.
Coastal ecosystems are ecologically and commercially valuable, productive habitats that are experiencing escalating compromises of their structural and functional integrity. The Clean Water Act (USC 1972) requires identification of impaired water bodies and determination of the causes of impairment. Classification simplifies these determinations, because estuaries within a class are more likely to respond similarly to particular stressors. We reviewed existing classification systems for their applicability to grouping coastal marine and Great Lakes water bodies based on their responses to aquatic stressors, including nutrients, toxic substances, suspended sediments, habitat alteration, and combinations of stressors. Classification research historically addressed terrestrial and freshwater habitats rather than coastal habitats. Few efforts focused on stressor response, although many well-researched classification frameworks provide information pertinent to stressor response. Early coastal classifications relied on physical and hydrological properties, including geomorphology, general circulation patterns, and salinity. More recent classifications sort ecosystems into a few broad types and may integrate physical and biological factors. Among current efforts are those designed for conservation of sensitive habitats based on ecological processes that support patterns of biological diversity. Physical factors, including freshwater inflow, residence time, and flushing rates, affect sensitivity to stressors. Biological factors, such as primary production, grazing rates, and mineral cycling, also need to be considered in classification. We evaluate each existing classification system with respect to objectives, defining factors, extent of spatial and temporal applicability, existing sources of data, and relevance to aquatic stressors. We also consider classification methods in a generic sense and discuss their strengths and weaknesses for our purposes. Although few existing classifications are based on responses to stressors, may well-researched paradigms provide important information for improving our capabilities for classification, as an investigative and predictive management tool.  相似文献   
44.
45.
Hydraulic flow and transport (heat and solute) within crystalline rocks is dominated by the fracture systems found within them. In situ stress conditions have a significant impact on the hydraulic, mechanical and thermal coupled processes, and quantification of these processes provides a key to understanding the often transient time-dependent behaviour of crystalline rocks. In this paper, a geomechanical model is presented which describes fracture closure as a function of effective stress and the changes in parameters such as storage, permeability, porosity and aperture. Allowing the fracture closure to be defined by the change in normal effective stress provides a link to the numerical consideration of parametrical changes due to rock stress alterations caused for example by changes in fracture fluid pressure, stress release, tectonic stress, thermal stress, orientation of the natural fracture in the pervasive stress system and local changes in a rock mass due to stress alteration. The model uses geometrical considerations based on a fractal distribution of apertures on the fracture surface, and applies well-established analytical elastic deformation solutions to calculate the deformation response to changes in effective stress. Analysis of the fractal generation method allows a standard normal distribution of fracture apertures to be predicted for all common fractal dimensions relating to a 2D surface. Changes in the fracture aperture are related to hydraulic functions such as permeability, storage and porosity of the fracture. The geomechanical model is experimentally validated against laboratory scale experimental data gained from the closure of a fractured sample recovered at a depth of 3,800 m from the KTB pilot borehole. Parameters for matching the experimental data were established externally, the only fitting parameters applied were the minimum and maximum contact area between the surfaces and the number of allowable contacts. The model provides an insight into the key processes determining the closure of a fracture, and can act as a material input function for numerical models linking the effects of changes in the stress field, hydraulic or thermal conditions, to the flow and transport parameters of a fractured system.
Résumé L’écoulement et le transport (chaleur et soluté) dans les roches cristallines sont dominés par les systèmes de fracture. Les conditions de stress in-situ ont un impact significatif sur l’hydraulique, les processus couplés de mécanique et thermique et la quantification de ces processus apportent une clé pour comprendre le comportement transitoire des roches cristallines. Dans cet article un modèle géomécanique est présenté, modèle qui décrit la fermeture des fractures comme une fonction de la contrainte effective et des changements de paramètres tels le coefficient d’emmagasinement, la perméabilité, la porosité et l’ouverture. En s’accordant que la fermeture des fractures est définit par les changements de la contrainte effective normale, on apporte le lien avec la considération numérique des changements paramétriques dus aux altérations de la contrainte des roches, causés par exemple par des variations de la pression des fluides dans les fractures, du dégagement de la contrainte, des contraintes tectoniques et thermiques, des orientations des fractures naturelles dans le système de contraintes pénétrantes, et des changements locaux dans un massif de roches dus à l’altération des contraintes. Le modèle utilise des considérations géométriques basées sur une distribution fractale des ouvertures à la surface des fractures, et permet d’établir des solutions analytiques de la déformation élastique pour calculer la réponse de la déformation à la contrainte effective. L’analyse de la méthode par génération fractale permet de prédire une distribution normale standard de l’ouverture des fractures, pour toutes les dimensions fractales en relation avec les surfaces 2D. Les changements dans l’ouverture des fractures sont mis en relation avec les fonctions hydrauliques tels la perméabilité, l’emmagasinement et la porosité de la fracture. Le modèle géoméchanique est expérimentalement validé à l’échelle du laboratoire sur un échantillon fracturé récupéré à une profondeur de 3,800 mètres sur le puits du site pilote KTB. Les paramètres du calibrage des données expérimentales ont été établies extérieurement, les seuls paramètres utilisés étant les surfaces de contact minimum et maximum, et le nombre de contacts permis. Le modèle apporte une connaissance perspicace sur le processus clé déterminant la fermeture des fractures, et peut servir de fonction input dans les modèles numériques reliant les effets des variations de la contrainte du terrain, les conditions hydrauliques ou thermales, les paramètres de l’écoulement et du transport et les systèmes de fracture.

Resumen El flujo hidráulico y transporte (de calor y solutos) dentro de rocas cristalinas está dominado por los sistemas de fracturas que se encuentran en ellas. Las condiciones de esfuerzos in-situ tienen un impacto significativo en los procesos aparejados termales, mecánicos e hidráulicos y la cuantificación de estos procesos aporta una clave para entender el frecuente comportamiento transitorio dependiente de las rocas cristalinas. En este artículo se presenta un modelo geomecánico que describe el cierre de fracturas en función del esfuerzo efectivo y los cambios en parámetros tal como almacenamiento, permeabilidad, porosidad y apertura. El definir el cierre de fractura mediante el cambio en esfuerzo normal efectivo aporta un vínculo con la consideración numérica de cambios paramétricos ocasionados por alteraciones de esfuerzos en la roca causadas, por ejemplo, por cambios en presión de fluidos en fractura, liberación de esfuerzo, esfuerzo tectónico, esfuerzo termal, orientación de fracturas naturales en el sistema de esfuerzos penetrante, y cambios locales en una masa rocosa ocasionados por alteración de esfuerzos. El modelo utiliza consideraciones geométricas basadas en la distribución fractal de aperturas en la superficie de fractura y aplica soluciones analíticas bien establecidas de deformación elástica para calcular la respuesta de deformación a cambios en el esfuerzo efectivo. Los análisis del método de generación fractal permiten predecir una distribución normal standard para la distribución de aperturas de fracturas para todas las dimensiones fractales comunes que se relacionan con una superficie 2D. Los cambios en la apertura de fractura se relacionan con funciones hidráulicas tal como permeabilidad, almacenamiento y porosidad de la fractura. El modelo geomecánico se ha validado experimentalmente en contra de datos experimentales a escala de laboratorio obtenidos a partir del cierre de una muestra fracturada recuperada a una profundidad de 3,800 m en el pozo piloto KTB. Se establecieron externamente parámetros que se ajustan a los datos experimentales, con los parámetros de ajuste aplicados que fueron el área máxima y mínima de contacto entre las superficies y el número de contactos permisibles. El modelo arroja luz sobre los procesos clave que determinan el cierre de una fractura y puede actuar como un material de función de entrada para modelos numéricos que vinculan los efectos de cambios en el campo de esfuerzos, condiciones termales o hidráulicas, con los parámetros de flujo y transporte de un sistema fracturado.
  相似文献   
46.
47.
To validate a resuspension model of particulate material (salmonid farm wastes), a UV fluorescent particle tracer was selected with similar settling characteristics. Tracer was introduced to the seabed (water depth ≈30 m) and sediment samples taken on days 0, 3, 10, 17 and 30 to measure the horizontal and vertical distribution of tracer in sediments. A concentric sampling grid was established at radii of 25, 50, 100, 150, 200, 400, 700 and 1, 000 m from the source on transects 30° apart. The bulk of the deployed tracer was initially concentrated in an area 25 m radius from the release point; tracer was observed to steadily decrease to zero over a period of 30 days. In a 200 m region measured from the release point in the direction of the residual current, the redeposition of tracer was low. A Lagrangian particle tracking model was validated using these observed data by varying resuspension model parameters within limits to obtain the best agreement between spatial and temporal distributions. The validated model generally gave good predictions of total mass budgets (±7% of total tracer released), particulary where tracer concentrations were high near the release point. Best fit model parameters (critical erosion shear stress=0.018 N m−2, erodibility constan=60 g m−2 d−1) are at the low end of reported parameters for coastal resuspension models. Such a low critical erosion shear stress indicates that the frequency of resuspension and deposition events for freshly deposited material is high.  相似文献   
48.
49.
This study examines the spatial and temporal variability of chemical denudation rates in Kärkevagge, northern Sweden. The chemical flux rates within the valley are strongly influenced by the local geology. Chemical denudation rates determined for the study period are more than double those previously reported in the literature for this valley. Rates of greater than 46t km−2 a−1 were measured at the valley mouth over the course of the melt season. This difference is likely due to differences in measurement technique compared to that used by past researchers. This rate is also much higher than for other arctic and alpine watersheds. Chemical denudation in Kärkevagge is comparable to larger temperate rivers. The rapid chemical denudation in Kärkevagge is likely due to sulfide weathering creating acid solutions.  相似文献   
50.
The second marvel to catch the eye of the visitor to Kärkevagge, after the impressive boulder deposit on the floor of the valley, is the series of prominent white stripes running down the valley's dark cliffs. Streams and springs descending the eastern flank of Kärkevagge are marked by the presence of whitish coatings on the black rock surfaces and on cobbles lining ephemeral waterways. These were referred to as 'lime crusts' by early investigators, but they are not reactive to HCl. We believe that they are a precipitate resulting from acid attack on the local rocks. Pyrite is common in many of the rocks in the valley and its oxidation produces sulfuric acid. As the dissolved mineral elements are carried in the drainage water, efflorescence forms on the surfaces where the water flows due to evaporation or to changes in temperature. The exact mineralogy of the white crusts is unknown, but the crusts are dominated by Al, S, and O, and in some cases by Ca, depending on the substrate and local conditions. Gypsum, illite, and chlorite have been identified by X–ray diffraction of some scrapings of white–coated rocks. However, we believe that some unidentified oxy–hydroxy aluminum sulfates make up the bulk of the precipitates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号