首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1869篇
  免费   108篇
  国内免费   6篇
测绘学   80篇
大气科学   148篇
地球物理   409篇
地质学   741篇
海洋学   140篇
天文学   303篇
综合类   8篇
自然地理   154篇
  2024年   4篇
  2023年   12篇
  2022年   11篇
  2021年   30篇
  2020年   48篇
  2019年   44篇
  2018年   61篇
  2017年   79篇
  2016年   96篇
  2015年   63篇
  2014年   68篇
  2013年   127篇
  2012年   83篇
  2011年   100篇
  2010年   109篇
  2009年   105篇
  2008年   104篇
  2007年   93篇
  2006年   95篇
  2005年   86篇
  2004年   87篇
  2003年   60篇
  2002年   61篇
  2001年   36篇
  2000年   25篇
  1999年   39篇
  1998年   21篇
  1997年   18篇
  1996年   17篇
  1995年   8篇
  1994年   23篇
  1993年   15篇
  1992年   9篇
  1991年   7篇
  1990年   9篇
  1989年   7篇
  1988年   6篇
  1987年   8篇
  1986年   5篇
  1985年   9篇
  1984年   6篇
  1983年   11篇
  1982年   8篇
  1981年   8篇
  1980年   17篇
  1979年   8篇
  1978年   6篇
  1977年   6篇
  1976年   6篇
  1974年   4篇
排序方式: 共有1983条查询结果,搜索用时 78 毫秒
91.
Subsidence due to groundwater overexploitation has been recognized in the metropolitan area of Murcia (25 km2) in south-eastern Spain since the early 1990s. Previous published works have focused their attention on land subsidence that occurred during the drought period between 1995 and 2008. This work first analyzes the groundwater recovery that has occurred since 2008 and then determines the kind of associated ground deformation detected by the new extensometric data. Subsequently, subsidence time series are computed on 24 geotechnical boreholes scattered throughout the study area by means of a hydro-mechanical finite element code and a linear-elastic constitutive law. A spatio-temporal interpolation of the numerically modeled surface displacements is performed over the whole domain and compared with extensometers and DInSAR-derived displacement maps in two different periods: the drought period from 2004 to 2008, and the recovery period from 2008 to 2012. In spite of the limited information on the geomechanical parameters characterizing the modelled geological formations, the proposed approach is able to discriminate areas where the soils have an elastic behavior (small differences in the comparisons) or an elasto-plastic behavior (large differences in the comparisons). This zonation enhances the understanding of the subsidence phenomenon in Murcia City and could prevent, from a quantitatively point of view, future severe subsidence due to aquifer overexploitation.  相似文献   
92.
The town of Santa Teresa (Cusco Region, Peru) has been affected by several large debris-flow events in the recent past, which destroyed parts of the town and resulted in a resettlement of the municipality. Here, we present a risk analysis and a risk management strategy for debris-flows and glacier lake outbursts in the Sacsara catchment. Data scarcity and limited understanding of both physical and social processes impede a full quantitative risk assessment. Therefore, a bottom-up approach is chosen in order to establish an integrated risk management strategy that is robust against uncertainties in the risk analysis. With the Rapid Mass Movement Simulation (RAMMS) model, a reconstruction of a major event from 1998 in the Sacsara catchment is calculated, including a sensitivity analysis for various model parameters. Based on the simulation results, potential future debris-flows scenarios of different magnitudes, including outbursts of two glacier lakes, are modeled for assessing the hazard. For the local communities in the catchment, the hazard assessment is complemented by the analysis of high-resolution satellite imagery and fieldwork. Physical, social, economic, and institutional vulnerability are considered for the vulnerability assessment, and risk is eventually evaluated by crossing the local hazard maps with the vulnerability. Based on this risk analysis, a risk management strategy is developed, consisting of three complementing elements: (i) standardized risk sheets for the communities; (ii) activities with the local population and authorities to increase social and institutional preparedness; and (iii) a simple Early Warning System. By combining scientific, technical, and social aspects, this work is an example of a framework for an integrated risk management strategy in a data scarce, remote mountain catchment in a developing country.  相似文献   
93.
Messinian evaporites of locally more than 3‐km thickness occupy the subduction zone between Cyprus and Eratosthenes Seamount. Based on a dense grid of seismic reflection profiles, we report on compressional salt tectonics and its impact on the Late Miocene to Quaternary structural evolution of the Cyprus subduction zone. Results show that evaporites have experienced significant post‐Messinian shortening along the plate boundary. Shortening has initiated allochthonous salt advance between Cyprus and Eratosthenes Seamount, representing an excellent example of salt which efficiently escapes subduction and accretion. Further east, between Eratosthenes Seamount and the Hecataeus Rise, evaporites were compressionally inflated without having advanced across post‐Messinian strata. Such differences in the magnitude of salt tectonic shortening may reflect a predominately north–south oriented post‐Messinian convergence direction, raising the possibility of a later coupling between the motion of Cyprus and Anatolia than previously thought. Along the area bordered by Cyprus and Eratosthenes Seamount a prominent step in the seafloor represents the northern boundary of a controversially debated semi‐circular depression. Coinciding with the southern edge of the salt sheet, this bathymetric feature is suggested to have formed as a consequence of compressional salt inflation and seamount‐directed salt advance. Topographic lows on top of highly deformed evaporites are locally filled by up to 700 m of late Messinian sediments. The uppermost 200 m of these sediments were drilled in the course of ODP Leg 160 and interpreted to represent Lago Mare‐type deposits (Robertson, Tectonophysics, 1998d, 298 , 63‐82). Lago Mare deposits are spatially restricted to the western part of the subduction zone, pinching out towards the east whereas presumably continuing into the Herodotus Basin further west. We suggest a sea level control on late Messinian Lago Mare sedimentation, facilitating sediment delivery into basinal areas whereas inhibiting Lago Mare deposition into the desiccated Levant Basin. Locally, early salt deformation is believed to have provided additional accommodation space for Lago Mare sedimentation, resulting in the presently observed minibasin‐like geometry.  相似文献   
94.
95.
The hyper-arid conditions prevailing in Agua Verde aquifer in northern Chile make this system the most important water source for nearby towns and mining industries. Due to the growing demand for water in this region, recharge is investigated along with the impact of intense pumping activity in this aquifer. A conceptual model of the hydrogeological system is developed and implemented into a two-dimensional groundwater-flow numerical model. To assess the impact of climate change and groundwater extraction, several scenarios are simulated considering variations in both aquifer recharge and withdrawals. The estimated average groundwater lateral recharge from Precordillera (pre-mountain range) is about 4,482 m3/day. The scenarios that consider an increase of water withdrawal show a non-sustainable groundwater consumption leading to an over-exploitation of the resource, because the outflows surpasses inflows, causing storage depletion. The greater the depletion, the larger the impact of recharge reduction caused by the considered future climate change. This result indicates that the combined effects of such factors may have a severe impact on groundwater availability as found in other groundwater-dependent regions located in arid environments. Furthermore, the scenarios that consider a reduction of the extraction flow rate show that it may be possible to partially alleviate the damage already caused to the aquifer by the continuous extractions since 1974, and it can partially counteract climate change impacts on future groundwater availability caused by a decrease in precipitation (and so in recharge), if the desalination plant in Taltal increases its capacity.  相似文献   
96.
This paper presents an advanced 3D numerical methodology to reproduce the kinematics of slow active landslides, more precisely, to reproduce the nearly constant strain rate (secondary creep) and the acceleration/deceleration of the moving mass due to hydrological changes. For this purpose, finite element analyses are performed in a large area covering a long time-span (12 years), in order to exhibit different interacting slope movements. First, we perform a stability analysis using the shear strength reduction (SSR) technique with a Mohr-Coulomb failure criteria. It is done in order to compute factors of safety (FS) and to identify two different scenarios, the first one being stable (FS > 1) and the second one being unstable (FS < 1). In the studied test case, the Portalet landslide (Central Spanish Pyrenees), the first scenario corresponds to an initial stable configuration of the slope and the second one to an unstable excavated configuration. Second, taking the first scenario as an initial condition, a time-dependent analysis is performed using a coupled formulation to model solid skeleton and pore fluids interaction, and a simplified ground water model that takes into account daily rainfall intensity. In this case, a viscoplastic constitutive model based on Perzyna’s theory is applied to reproduce soil viscous behavior and the delayed creep deformation due to the excavation. The fluidity parameter is calibrated to reproduce displacements measured by the monitoring systems. Our results demonstrate that 3D analyses are preferable to 2D ones for reproducing in a more realistic way the slide behavior. After calibration, the proposed model is able to simulate successfully short- and medium-term predictions during stages of primary and secondary creep.  相似文献   
97.
Natural Hazards - This study presents a new approach to assess storm surge risk from tropical cyclones under climate change by direct calculation of the local flood levels using a limited number of...  相似文献   
98.
Vilca  Oscar  Mergili  Martin  Emmer  Adam  Frey  Holger  Huggel  Christian 《Landslides》2021,18(6):2211-2223

Glacial lakes represent a threat for the populations of the Andes and numerous disastrous glacial lake outburst floods (GLOFs) occurred as a result of sudden dam failures or dam overtoppings triggered by landslides such as rock/ice avalanches into the lake. This paper investigates a landslide-triggered GLOF process chain that occurred on February 23, 2020, in the Cordillera Vilcabamba in the Peruvian Andes. An initial slide at the SW slope of Nevado Salkantay evolved into a rock/ice avalanche. The frontal part of this avalanche impacted the moraine-dammed Lake Salkantaycocha, triggering a displacement wave which overtopped and surficially eroded the dam. Dam overtopping resulted in a far-reaching GLOF causing fatalities and people missing in the valley downstream. We analyze the situations before and after the event as well as the dynamics of the upper portion of the GLOF process chain, based on field investigations, remotely sensed data, meteorological data and a computer simulation with a two-phase flow model. Comparison of pre- and post-event field photographs helped us to estimate the initial landslide volume of 1–2 million m3. Meteorological data suggest rainfall and/or melting/thawing processes as possible causes of the landslide. The simulation reveals that the landslide into the lake created a displacement wave of 27 m height. The GLOF peak discharge at the dam reached almost 10,000 m3/s. However, due to the high freeboard, less than 10% of the lake volume drained, and the lake level increased by 10–15 m, since the volume of landslide material deposited in the lake (roughly 1.3 million m3) was much larger than the volume of released water (57,000 m3, according to the simulation). The model results show a good fit with the observations, including the travel time to the uppermost village. The findings of this study serve as a contribution to the understanding of landslide-triggered GLOFs in changing high-mountain regions.

  相似文献   
99.
Expansion in the world's human population and economic development will increase future demand for fish products. As global fisheries yield is constrained by ecosystems productivity and management effectiveness, per capita fish consumption can only be maintained or increased if aquaculture makes an increasing contribution to the volume and stability of global fish supplies. Here, we use predictions of changes in global and regional climate (according to IPCC emissions scenario A1B), marine ecosystem and fisheries production estimates from high resolution regional models, human population size estimates from United Nations prospects, fishmeal and oil price estimations, and projections of the technological development in aquaculture feed technology, to investigate the feasibility of sustaining current and increased per capita fish consumption rates in 2050. We conclude that meeting current and larger consumption rates is feasible, despite a growing population and the impacts of climate change on potential fisheries production, but only if fish resources are managed sustainably and the animal feeds industry reduces its reliance on wild fish. Ineffective fisheries management and rising fishmeal prices driven by greater demand could, however, compromise future aquaculture production and the availability of fish products.  相似文献   
100.
Exchange of groundwater and lake water with typically quite different chemical composition is an important driver for biogeochemical processes at the groundwater‐lake interface, which can affect the water quality of lakes. This is of particular relevance in mine lakes where anoxic and slightly acidic groundwater mixes with oxic and acidic lake water (pH < 3). To identify links between groundwater‐lake exchange rates and acid neutralization processes in the sediments, exchange rates were quantified and related to pore‐water pH, sulfate and iron concentrations as well as sulfate reduction rates within the sediment. Seepage rates measured with seepage meters (?2.5 to 5.8 L m‐2 d‐1) were in reasonable agreement with rates inverted from modeled chloride profiles (?1.8 to 8.1 L m‐2 d‐1). Large‐scale exchange patterns were defined by the (hydro)geologic setting but superimposed by smaller scale variations caused by variability in sediment texture. Sites characterized by groundwater upwelling (flow into the lake) and sites where flow alternated between upwelling and downwelling were identified. Observed chloride profiles at the alternating sites reflected the transient flow regime. Seepage direction, as well as seepage rate, were found to influence pH, sulfate and iron profiles and the associated sulfate reduction rates. Under alternating conditions proton‐consuming processes, for example, sulfate reduction, were slowed. In the uppermost layer of the sediment (max. 5 cm), sulfate reduction rates were significantly higher at upwelling (>330 nmol g‐1 d‐1) compared to alternating sites (<220 nmol g‐1 d‐1). Although differences in sulfate reduction rates could not be explained solely by different flux rates, they were clearly related to the prevailing groundwater‐lake exchange patterns and the associated pH conditions. Our findings strongly suggest that groundwater‐lake exchange has significant effects on the biogeochemical processes that are coupled to sulfate reduction such as acidity retention and precipitation of iron sulfides. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号