首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1786篇
  免费   104篇
  国内免费   6篇
测绘学   76篇
大气科学   136篇
地球物理   386篇
地质学   718篇
海洋学   134篇
天文学   288篇
综合类   8篇
自然地理   150篇
  2024年   4篇
  2023年   12篇
  2022年   10篇
  2021年   29篇
  2020年   46篇
  2019年   44篇
  2018年   55篇
  2017年   77篇
  2016年   90篇
  2015年   60篇
  2014年   58篇
  2013年   119篇
  2012年   79篇
  2011年   96篇
  2010年   108篇
  2009年   99篇
  2008年   103篇
  2007年   90篇
  2006年   92篇
  2005年   84篇
  2004年   87篇
  2003年   58篇
  2002年   61篇
  2001年   35篇
  2000年   23篇
  1999年   38篇
  1998年   20篇
  1997年   15篇
  1996年   17篇
  1995年   6篇
  1994年   21篇
  1993年   14篇
  1992年   8篇
  1991年   7篇
  1990年   9篇
  1989年   7篇
  1988年   5篇
  1987年   8篇
  1986年   5篇
  1985年   8篇
  1984年   6篇
  1983年   10篇
  1982年   7篇
  1981年   8篇
  1980年   15篇
  1979年   7篇
  1978年   5篇
  1977年   6篇
  1976年   6篇
  1974年   4篇
排序方式: 共有1896条查询结果,搜索用时 15 毫秒
821.
A 2-year (October 2003–October 2005) high-resolution sediment trap study was conducted in Sacrower See, a dimictic hardwater lake in northeastern Germany. Geochemical and diatom data from sediment trap samples were compared with a broad range of limnological and meteorological parameters to quantify the impact of single parameters on biochemical calcite precipitation and organic matter production. Our goals were to disentangle how carbonaceous varves and their sublaminae form during the annual cycle to better understand the palaeorecords and to detect influences of dissolution, resuspension as well as of global radiation and stratification on lake internal particle formation. Total particle fluxes in both investigated years were highest during spring and summer. Sedimentation was dominated by autochthonous organic matter and biochemically precipitated calcite. Main calcite precipitation occurred between April and July and was preceded and followed by smaller flux peaks caused by resuspension during winter and blooms of the calcified green algae Phacotus lenticularis during summer. In some of the trap intervals during summer up to 100% of the precipitated calcite was dissolved in the hypolimnion. High primary production due to stable insolation conditions in epilimnic waters began with stratification of the water column. Start and development of stratification is closely related to air and water surface temperatures. It is assumed that global radiation influences the onset and stability of water column stratification and thereby determining the intensity of primary production and consequently of timing and amount of calcite precipitation which is triggered by phytoplanktonic CO2 consumption. Sediment fluxes of organic matter and calcite are also related to the winter NAO-Index. Therefore these fluxes will be used as a proxy for ongoing reconstruction of Holocene climate conditions.  相似文献   
822.
A microstructure model of dual-porosity type is proposed to describe contaminant transport in fully-saturated swelling clays. The swelling medium is characterized by three separate-length scales (nano, micro, and macro) and two levels of porosity (nano- and micropores). At the nanoscale, the medium is composed of charged clay particles saturated by a binary monovalent aqueous electrolyte solution. At the intermediate (micro) scale, the two-phase homogenized system is represented by swollen clay clusters (or aggregates) with the nanoscale electrohydrodynamics, local charge distribution, and disjoining pressure effects incorporated in the averaged constitutive laws of the electro-chemo-mechanical coefficients and the swelling pressure, which appear in Onsager’s reciprocity relations and in a modified form of Terzaghi’s effective principle, respectively. The microscopic coupling between aggregates and a bulk solution lying in the micropores is ruled by a slip boundary condition on the tangential velocity of the fluid, which captures the effects of the thin electrical double layers surrounding each clay cluster. At the macroscale, the system of clay clusters is homogenized with the bulk fluid. The resultant macroscopic picture is governed by a dual-porosity model wherein macroscopic flow and ion transport take place in the bulk solution and the clay clusters act as sources/sinks of mass of water and solutes to the bulk fluid. The homogenization procedure yields a three-scale model of the swelling medium by providing new nano and micro closure problems, which are solved numerically to construct constitutive laws for the effective electro-chemo-hydro-mechanical coefficients. Considering local instantaneous equilibrium between the clay aggregates and micropores, a quasisteady version of the dual-porosity model is proposed. When combined with the three-scale portrait of the swelling medium, the quasisteady model allows us to build-up numerically the constitutive law of the equilibrium adsorption isotherm, which governs the instantaneous immobilization of the solutes in the clay clusters. Moreover, the constitutive behavior of the retardation coefficient is also constructed by exploring its representation in terms of the local profile of the electrical double layer potential of the electrolyte solution, which satisfies the Poisson–Boltzmann problem at the nanoscale.  相似文献   
823.
Most human activities and hydrogeological information on small young volcanic islands are near the coastal area. There are almost no hydrological data from inland areas, where permanent springs and/or boreholes may be rare or nonexistent. A major concern is the excessive salinity of near-the-coast wells. Obtaining a conceptual hydrogeological model is crucial for groundwater resources development and management. Surveys of water seepages and rain for chemical and environmental isotope contents may provide information on the whole island groundwater flow conditions, in spite of remaining geological and hydrogeological uncertainties. New data from Easter Island (Isla de Pascua), in the Pacific Ocean, are considered. Whether Easter Island has a central low permeability volcanic “core” sustaining an elevated water table remains unknown. Average recharge is estimated at 300–400 mm/year, with a low salinity of 15–50 mg/L Cl. There is an apron of highly permeable volcanics that extends to the coast. The salinity of near-the-coast wells, >1,000 mg/L Cl, is marine in origin. This is the result of a thick mixing zone of island groundwater and encroached seawater, locally enhanced by upconings below pumping wells. This conceptual model explains what is observed, in the absence of inland boreholes and springs.  相似文献   
824.
Knowledge on the stresses in shotcrete tunnel shells is of great importance, as to assess their safety against severe cracking or failure. Estimation of these stresses from 3D optical displacement measurements requires shotcrete material models, which may preferentially consider variations in the water–cement and aggregate–cement ratios. Therefore, we employ two representative volume elements within a continuum micromechanics framework: the first one relates to cement paste (with a spherical material phase representing cement clinker grains, needle-shaped hydrate phases with isotropically distributed spatial orientations, a spherical water phase, and a spherical air phase; all being in mutual contact), and the second one relates to shotcrete (with phases representing cement paste and aggregates, whereby aggregate inclusions are embedded into a matrix made up by cement paste). Elasticity homogenization follows self-consistent schemes (at the cement paste level) and Mori–Tanaka estimates (at the shotcrete level), and stress peaks in the hydrates related to quasi-brittle material failure are estimated by second-order phase averages derived from the RVE-related elastic energy. The latter permits upscaling from the hydrate strength to the shotcrete strength. Experimental data from resonant frequency tests, ultrasonics tests, adiabatic tests, uniaxial compression tests, and nanoindentation tests suggest that shotcrete elasticity and strength can be reasonably predicted from mixture- and hydration-independent elastic properties of aggregates, clinker, hydrates, water, and air, and from strength properties of hydrates. At the structural level, the micromechanics model, when combined with 3D displacement measurements, predicts that a decrease of the water–cement ratio increases the safety of the shotcrete tunnel shell.  相似文献   
825.
826.
827.
828.
829.
Flow transverse bedforms (ripples and dunes) are ubiquitous in rivers and coastal seas. Local hydrodynamics and transport conditions depend on the size and geometry of these bedforms, as they constitute roughness elements at the bed. Bedform influence on flow energy must be considered for the understanding of flow dynamics, and in the development and application of numerical models. Common estimations or predictors of form roughness (friction factors) are based mostly on data of steep bedforms (with angle-of-repose lee slopes), and described by highly simplified bedform dimensions (heights and lengths). However, natural bedforms often are not steep, and differ in form and hydraulic effect relative to idealised bedforms. Based on systematic numerical model experiments, this study shows how the hydraulic effect of bedforms depends on the flow structure behind bedforms, which is determined by the bedform lee side angle, aspect ratio and relative height. Simulations reveal that flow separation behind bedform crests and, thus, a hydraulic effect is induced at lee side angles steeper than 11 to 18° depending on relative height, and that a fully developed flow separation zone exists only over bedforms with a lee side angle steeper than 24°. Furthermore, the hydraulic effect of bedforms with varying lee side angle is evaluated and a reduction function to common friction factors is proposed. A function is also developed for the Nikuradse roughness (k s), and a new equation is proposed which directly relates k s to bedform relative height, aspect ratio and lee side angle.  相似文献   
830.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号