首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1982篇
  免费   132篇
  国内免费   34篇
测绘学   94篇
大气科学   145篇
地球物理   420篇
地质学   796篇
海洋学   193篇
天文学   299篇
综合类   41篇
自然地理   160篇
  2024年   5篇
  2023年   13篇
  2022年   17篇
  2021年   42篇
  2020年   55篇
  2019年   53篇
  2018年   65篇
  2017年   84篇
  2016年   97篇
  2015年   69篇
  2014年   74篇
  2013年   132篇
  2012年   94篇
  2011年   106篇
  2010年   121篇
  2009年   113篇
  2008年   110篇
  2007年   95篇
  2006年   101篇
  2005年   96篇
  2004年   97篇
  2003年   65篇
  2002年   70篇
  2001年   44篇
  2000年   31篇
  1999年   39篇
  1998年   21篇
  1997年   20篇
  1996年   21篇
  1995年   7篇
  1994年   22篇
  1993年   16篇
  1992年   13篇
  1991年   7篇
  1990年   9篇
  1989年   7篇
  1988年   5篇
  1987年   9篇
  1986年   5篇
  1985年   8篇
  1984年   6篇
  1983年   11篇
  1982年   7篇
  1981年   8篇
  1980年   15篇
  1979年   7篇
  1978年   5篇
  1977年   6篇
  1976年   6篇
  1974年   4篇
排序方式: 共有2148条查询结果,搜索用时 15 毫秒
951.
952.
953.
Thermal history modelling based on zircon‐ and apatite fission track and apatite (U–Th)/He data constrain and refine the near‐surface exhumation of the south‐eastern Tauern Window (Penninic units) and neighbouring Austroalpine basement units in the Eastern Alps. Fast exhumation on both sides of the Penninic/Austroalpine boundary coincides with a period of lateral extrusion and tectonic denudation of the Penninic units in Miocene time (22–12 Ma). The jump to older ages occurs within the Austroalpine unit along the Polinik fault, which therefore defines the boundary between the tectonically denuded units and the hangingwall at that time. According to the different (U–Th)/He ages between the Penninic Hochalm‐ and Sonnblick Domes we demonstrate a differential cooling history of these two domes in the latest Miocene and early Pliocene.  相似文献   
954.
Prevailing theory suggests that stream temperature warms asymptotically in a downstream direction, beginning at the temperature of the source in the headwaters and levelling off downstream as it converges to match meteorological conditions. However, there have been few empirical examples of longitudinal patterns of temperature in large rivers due to a paucity of data. We constructed longitudinal thermal profiles (temperature vs distance) for 53 rivers in the Pacific Northwest (USA) using an extensive data set of remotely sensed summertime river temperatures and classified each profile into one of five patterns of downstream warming: asymptotic (increasing then flattening), linear (increasing steadily), uniform (not changing), parabolic (increasing then decreasing), or complex (not fitting other classes). We evaluated (1) how frequently profiles warmed asymptotically downstream as expected, and (2) whether relationships between river temperature and common hydroclimatic variables differed by profile class. We found considerable diversity in profile shape, with 47% of rivers warming asymptotically and 53% having alternative profile shapes. Water temperature did not warm substantially over the course of the river for coastal parabolic and uniform profiles, and for some linear and complex profiles. Profile classes showed no clear geographical trends. The degree of correlation between river temperature and hydroclimatic variables differed among profile classes, but there was overlap among classes. Water temperature in rivers with asymptotic or parabolic profiles was positively correlated with August air temperature, tributary temperature and velocity, and negatively correlated with elevation, August precipitation, gradient and distance upstream. Conversely, associations were less apparent in rivers with linear, uniform or complex profiles. Factors contributing to the unique shape of parabolic profiles differed for coastal and inland rivers, where downstream cooling was influenced locally by climate or cool water inputs, respectively. Potential drivers of shape for complex profiles were specific to each river. These thermal patterns indicate diverse thermal habitats that may promote resilience of aquatic biota to climate change. Without this spatial context, climate change models may incorrectly estimate loss of thermally suitable habitat. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
955.
The Alps play a pivotal role for glacier and climate reconstructions within Europe. Detailed glacial chronologies provide important insights into mechanisms of glaciation and climate change. We present 26 10Be exposure dates of glacially transported boulders situated on moraines and ice‐moulded bedrock samples at the Belalp cirque and the Great Aletsch valley, Switzerland. Weighted mean ages of ~10.9, 11.1, 11.0 and 9.6 ka for the Belalp, on up to six individual moraine ridges, constrain these moraines to the Egesen, Kartell and Schams stadials during Lateglacial to early Holocene times. The weighted mean age of ~12.5 ka for the right‐lateral moraine of the Great Aletsch correlates with the Egesen stadial related to the Younger Dryas cooling. These data indicate that during the early Holocene between ~11.7 and ~9.2 ka, glaciers in the Swiss Alps seem to have been significantly affected by cold climatic conditions initiated during the Younger Dryas and the Preboreal Oscillation. These conditions resulted in glacier margin oscillations relating to climatic fluctuations during the second phase of the Younger Dryas – and continuing into Boreal times – as supported by correlation of the innermost moraine of the Belalp Cirque to the Schams (early) Holocene stage. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
956.
The results reported in this paper deal with the simulation of damage in cohesive geomaterials such as rocks or concrete subjected to dynamic loads. The practical objective is to stimulate the production of tight gas reservoirs with a technique that is an alternative to hydraulic fracturing. The principle is that when subjected to dynamic loads, cohesive materials such as concrete, rocks or ceramics exhibit distributed micro‐cracking as opposed to localised cracking observed under static loads. Hence, a low permeability rock containing gas trapped into occluded pores can be fragmented with the help of dynamic loads, and gas can be extracted in a much more efficient way compared with hydraulic fracturing, where only large macro cracks are formed with very few connections between occluded pores. At the stage of laboratory development of this technique, compressive underwater shock waves have been used to increase the intrinsic permeability of concrete specimens. In a previous study, pressure waves generated by pulsed arc electrohydraulic discharges in water were used in order to induce micro‐cracking and an increase of average permeability of concrete hollow cylinders subjected to confinement stresses (equivalent to geostatic stresses). We discuss here a 3‐D anisotropic constitutive model aimed at describing the dynamic response of these specimens. It is based on rate‐dependent continuum damage constitutive relations. Crack closure effects and damage‐induced anisotropy are included in the model. The directional growth of damage is related to the directional growth of material intrinsic permeability. Numerical simulations of damage induced by shock waves show good agreement with the experiments for various confinement levels of the specimens. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
957.
In distributed and coupled surface water–groundwater modelling, the uncertainty from the geological structure is unaccounted for if only one deterministic geological model is used. In the present study, the geological structural uncertainty is represented by multiple, stochastically generated geological models, which are used to develop hydrological model ensembles for the Norsminde catchment in Denmark. The geological models have been constructed using two types of field data, airborne geophysical data and borehole well log data. The use of airborne geophysical data in constructing stochastic geological models and followed by the application of such models to assess hydrological simulation uncertainty for both surface water and groundwater have not been previously studied. The results show that the hydrological ensemble based on geophysical data has a lower level of simulation uncertainty, but the ensemble based on borehole data is able to encapsulate more observation points for stream discharge simulation. The groundwater simulations are in general more sensitive to the changes in the geological structure than the stream discharge simulations, and in the deeper groundwater layers, there are larger variations between simulations within an ensemble than in the upper layers. The relationship between hydrological prediction uncertainties measured as the spread within the hydrological ensembles and the spatial aggregation scale of simulation results has been analysed using a representative elementary scale concept. The results show a clear increase of prediction uncertainty as the spatial scale decreases. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
958.
Partial pressure of CO2 (pCO2) in surface seawater has been measured in the northeastern Pacific Ocean at Station P and along Line P since 1973. These data have been divided into ‘oceanic’ and ‘coastal/transition’ zones, and the seasonal and interannual variability and the long-term trends for each zone have been examined. The oceanic zone shows little seasonality in surface seawater pCO2, with undersaturation throughout the year. A strong, biologically-driven seasonal cycle is offset by variation in temperature-dependent solubility of CO2. The coastal/transition zone shows a decline in pCO2 from winter–spring through summer and fall that is likely the result of seasonal stratification and convection rather than coastal upwelling. Interannual variability all along Line P is correlated with the multivariate ENSO index (MEI), with lower seawater pCO2 associated with El Niño conditions. Correlations with the Pacific Decadal Oscillation Index are similar but weaker, in part because there are few data prior to the 1976 regime shift. The long-term trend in seawater pCO2 in the oceanic zone is +1.36±0.16 μatm year?1, indistinguishable from the atmospheric growth rate, and varies little among the seasons. In the coastal/transition zone a slow increase in the pCO2 of surface seawater relative to that of the atmosphere has led to increasing undersaturation, particularly in spring. Aliasing of the seasonal and interannual variability due to sampling frequency may explain part of the observed trend in the coastal/transition zone, but real changes in physical or biological processes are also possible and require more detailed study.  相似文献   
959.
Christian Onof 《水文研究》2013,27(11):1600-1614
Under future climate scenarios, possible changes of drought patterns pose new challenges for water resources management. For quantifying and qualifying drought characteristics in the UK, the drought severity indices of six catchments are investigated and modelled by two stochastic methods: autoregressive integrated moving average (ARIMA) models and the generalized linear model (GLM) approach. From the ARIMA models, autocorrelation structures are first identified for the drought index series, and the unexplained variance of the series is used to establish empirical relationships between drought and climate variables. Based on the ARIMA results, mean sea level pressure and possibly the North Atlantic Oscillation index are found to be significant climate variables for seasonal drought forecasting. Using the GLM approach, occurrences and amounts of rainfall are simulated with conditioning on climate variables. From the GLM‐simulated rainfall for the 1980s and 2080s, the probabilistic characteristics of the drought severity are derived and assessed. Results indicate that the drought pattern in the 2080s is less certain than for the 1961–1990 period, based on the Shannon entropy, but that droughts are expected to be more clustered and intermittent. The 10th and 50th quantiles of drought are likely higher in the 2080s scenarios, but there is no evidence showing the changes in the 90th quantile extreme droughts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号