首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   679篇
  免费   30篇
  国内免费   2篇
测绘学   32篇
大气科学   119篇
地球物理   149篇
地质学   244篇
海洋学   49篇
天文学   73篇
综合类   3篇
自然地理   42篇
  2023年   3篇
  2022年   4篇
  2021年   7篇
  2020年   13篇
  2019年   10篇
  2018年   24篇
  2017年   30篇
  2016年   37篇
  2015年   22篇
  2014年   23篇
  2013年   40篇
  2012年   34篇
  2011年   37篇
  2010年   44篇
  2009年   41篇
  2008年   36篇
  2007年   32篇
  2006年   23篇
  2005年   28篇
  2004年   20篇
  2003年   11篇
  2002年   24篇
  2001年   18篇
  2000年   5篇
  1999年   21篇
  1998年   5篇
  1997年   10篇
  1996年   11篇
  1995年   7篇
  1994年   8篇
  1993年   4篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   5篇
  1984年   4篇
  1982年   6篇
  1981年   3篇
  1979年   2篇
  1978年   3篇
  1977年   6篇
  1976年   6篇
  1975年   3篇
  1974年   4篇
  1973年   4篇
  1971年   2篇
  1951年   2篇
  1948年   1篇
排序方式: 共有711条查询结果,搜索用时 250 毫秒
671.
A refined substructure technique in the frequency domain is developed, which permits consideration of the interaction effects among adjacent containers through the supporting deformable soil medium. The tank‐liquid systems are represented by means of mechanical models, whereas discrete springs and dashpots stand for the soil beneath the foundations. The proposed model is employed to assess the responses of adjacent circular, cylindrical tanks for harmonic and seismic excitations over wide range of tank proportions and soil conditions. The influence of the number, spatial arrangement of the containers and their distance on the overall system's behavior is addressed. The results indicate that the cross‐interaction effects can substantially alter the impulsive components of response of each individual element in a tank farm. The degree of this impact is primarily controlled by the tank proportions and the proximity of the predominant natural frequencies of the shell‐liquid‐soil systems and the input seismic motion. The group effects should be not a priori disregarded, unless the tanks are founded on shallow soil deposit overlying very stiff material or bedrock. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
672.
In this paper, vertical peak floor acceleration (PFAv) demands on elastic multistory buildings are statistically evaluated using recorded ground motions. These demands are applicable to the assessment of nonstructural components that are rigid in the vertical direction and located at column lines or next to columns. Hence, PFAv demands of the floor system away from column lines and their effects on nonstructural components are not addressed. This study is motivated by the questionable general assumption that typical buildings are considered to be relatively flexible in the horizontal (lateral) direction but relatively rigid in the vertical (longitudinal) direction. Consequently, only few papers address the evaluation of vertical component acceleration demands throughout a building, and there is no consensus on the relevance of vertical accelerations in buildings. The results presented in this study show that the vertical ground acceleration demands are amplified throughout the column line of a steel frame structure. This amplification is in many cases significant, depending on the vertical stiffness of the load‐bearing system, damping ratio, and the location of the nonstructural component in the building. From these outcomes it can be concluded that the perception of a rigid‐body response of the column lines in the vertical direction is highly questionable, and further research on this topic is required. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
673.
The presence of a wellbore skin layer, formed during the drilling process, is a major impediment for the energy‐efficient use of water wells. Many models exist that predict its potential impacts on well hydraulics, but so far its relevant hydraulic parameters were only estimates or, at best, model results. Here, we present data on the typology, thickness, composition, and hydraulic properties obtained from the sampling of excavated dewatering wells in lignite surface mines and from inclined core drilling into the annulus of an abandoned water well. Despite the limited number of samples, several types of skin were identified. Both surface cake filtration and particle straining in the aquifer occur. The presence of microcracks may be a determining feature for the hydraulic conductivity of skin layers. In the case of the well‐developed water supply well, no skin layer was detected. The observed types and properties of wellbore skin samples can be used to test the many mathematical skin models.  相似文献   
674.
As a result of rock dissolution processes, karst aquifers exhibit highly conductive features such as caves and conduits. Within these structures, groundwater flow can become turbulent and therefore be described by nonlinear gradient functions. Some numerical groundwater flow models explicitly account for pipe hydraulics by coupling the continuum model with a pipe network that represents the conduit system. In contrast, the Conduit Flow Process Mode 2 (CFPM2) for MODFLOW-2005 approximates turbulent flow by reducing the hydraulic conductivity within the existing linear head gradient of the MODFLOW continuum model. This approach reduces the practical as well as numerical efforts for simulating turbulence. The original formulation was for large pore aquifers where the onset of turbulence is at low Reynolds numbers (1 to 100) and not for conduits or pipes. In addition, the existing code requires multiple time steps for convergence due to iterative adjustment of the hydraulic conductivity. Modifications to the existing CFPM2 were made by implementing a generalized power function with a user-defined exponent. This allows for matching turbulence in porous media or pipes and eliminates the time steps required for iterative adjustment of hydraulic conductivity. The modified CFPM2 successfully replicated simple benchmark test problems.  相似文献   
675.
The collapse capacity of earthquake‐excited inelastic nondeteriorating SDOF systems, which are vulnerable to the destabilizing effect of gravity loads (P‐delta effect), is evaluated. In this paper, the collapse capacity of the system subjected to a ground motion is defined as spectral acceleration at its initial structural period, at which the structure becomes unstable. Characteristic structural parameters, which affect the collapse capacity, are identified. Ground motion records of the ATC 63 far‐field set characterize severe earthquake excitation. In extensive incremental dynamic analyses studies, the impact of these parameters and of aleatory uncertainties on the collapse capacity is assessed and quantified. Median and percentile collapse capacities are plotted against the initial structural period leading to collapse capacity spectra. Nonlinear regression analyses are applied to derive analytical expressions of the design collapse capacity spectra and collapse fragility curves. The ultimate objective is to provide collapse capacity spectra for easy application and yet sufficient accurate assessment of the dynamic stability of flexible multistory buildings. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
676.
Segmentation along convergent margins controls earthquake magnitude and location, but the physical causes of segment boundaries, and their impact on earthquake rupture dynamics, are still poorly understood. One aspect of the 2004 and 2005 great Sumatra–Andaman earthquakes is their abrupt termination along a common boundary. This has led to speculation on the nature of the boundary, its origin and why it was not breached.

For the first time the boundary has been imaged and, with newly acquired marine geophysical data, we demonstrate that a ridge on the subducting Indo-Australian oceanic crust may exert a control on margin segmentation. This suggests a lower plate influence on margin structure, particularly its segmentation. The ridge is masked by the sedimentary cover in the trench. Its most likely trend is NNE–SSW. It is interpreted as a fracture zone on the subducting oceanic plate. A ramp or tear along the eastern flank of the subducting fracture zone beneath Simeulue Island may be considered as an intensification factor in terms of rupture propagation barrier.  相似文献   

677.
Subglacial lakes provide unique habitats, but the exact nature of physical and geochemical conditions are still a matter of debate and await direct sampling of water. Due to its isolation from external atmospheric forcing other environmental parameters influence the flow characteristics within the lake. In this study we use an improved treatment of the physical processes at the ice–water boundary interface to identify and quantify the impact of (1) the geothermal heat flux, (2) the heat flux from the lake into the ice, (3) the influence of the salinity of the lake water, and (4) the ice thickness on the size of the freezing area and the freeze/melt rates. We show that the modelled basal mass imbalance (that is the produced melt water minus the re-frozen water) depends on the geothermal heating as well as the heat flux into the ice. The circulation and the temperature distribution within subglacial Lake Vostok are rather stable against variations of geothermal heat flux, heat flux into the ice sheet, salinity of the lake, and small changes of the ice thickness above the lake. However, the flow regime for any subglacial lake with less than 2000 m ice thickness above, will be substantially different from those that experience higher pressures. This is because the buoyancy–temperature relationship reverses at this depth.  相似文献   
678.
Oil seeps from the southern Gulf of Mexico can be regarded as natural laboratories where the effect of crude oil seepage on chemosynthesis‐based communities and carbonate precipitation can be studied. During R/V Meteor cruise 114 the seep sites UNAM (Universidad Nacional Autónoma de México) Ridge, Mictlan Knoll and Tsanyao Yang Knoll (Bay of Campeche, southern Gulf of Mexico) were investigated and sampled for authigenic carbonate deposits containing large amounts of liquid oil and solid asphalt. The δ13C values of individual carbonate phases including: (i) microcrystalline matrix aragonite and calcite; (ii) grey, cryptocrystalline to microcrystalline aragonite; and (iii) clear, fibrous aragonite cement, are between ?30‰ and ?20‰, agreeing with oil as the primary carbon source. Raman spectra reveal that residual heavy oils from all sites are immature and most likely originate from the same reservoir. Geochemical batch modelling using the software code PHREEQC demonstrates how sulphate‐driven oxidation of oil‐derived low‐molecular to high‐molecular weight hydrocarbons affects carbonate saturation state, and shows that the oxidation state of carbon in hydrocarbon compounds and oxidation rates of hydrocarbons control carbonate saturation and precipitation at oil seeps. Phase‐specific trace and rare earth element contents of microcrystalline aragonite and calcite, grey cryptocrystalline aragonite and clear aragonite were determined, revealing enrichment in light rare earth elements for grey aragonite. By comparing trace element patterns of carbonates with those of associated oils, it becomes apparent that liquid hydrocarbons constitute an additional source of trace metals to sedimentary pore waters. This work not only demonstrates that the microbial degradation of oil at seeps may result in the precipitation of carbonate minerals, it also elucidates that trace metal inventories of seep carbonates archive diagnostic elemental patterns, which can be assigned to the presence of heavy hydrocarbons in interstitial pore waters.  相似文献   
679.
680.
The world oceans and seas are experiencing a dramatic decline in their health and viability. In the midst of this crisis, the Norwegian fjords represent under-studied and highly vulnerable ecosystems. Fjord chemistry and fjord ecosystems are poorly studied given the current focus on polar ice melting, fish stock reductions and oil disasters. For this reason, this review sheds light on and aims to accumulate local and national findings concerning the current viability of the Sognefjord, the world's second longest fjord and Norway's longest and deepest fjord, stretching 205 km (127 miles) and reaching 1308 m below sea level as its deepest point. This review shows that there is a critical need to establish knowledge and parameters to better monitor and prevent an ecosystem catastrophe from developing in Norwegian fjords. The poor circulation in fjords compared to opens seas reduces their ability to circulate waste and transport fresh water from hydroelectricity plants. Because of fjord morphology, pollutants and heavy metals are potentially trapped within them at great depths for decades. The monitoring of Norwegian fjords is thus of fundamental importance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号