首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   433篇
  免费   19篇
  国内免费   5篇
测绘学   8篇
大气科学   32篇
地球物理   150篇
地质学   164篇
海洋学   35篇
天文学   50篇
综合类   1篇
自然地理   17篇
  2019年   2篇
  2018年   6篇
  2017年   4篇
  2016年   6篇
  2015年   8篇
  2014年   16篇
  2013年   15篇
  2012年   7篇
  2011年   18篇
  2010年   16篇
  2009年   24篇
  2008年   22篇
  2007年   12篇
  2006年   14篇
  2005年   17篇
  2004年   15篇
  2003年   9篇
  2002年   10篇
  2001年   6篇
  2000年   8篇
  1999年   9篇
  1998年   7篇
  1997年   7篇
  1996年   8篇
  1995年   8篇
  1994年   5篇
  1993年   5篇
  1992年   6篇
  1991年   5篇
  1990年   5篇
  1989年   8篇
  1988年   4篇
  1987年   19篇
  1986年   9篇
  1985年   7篇
  1984年   10篇
  1983年   13篇
  1982年   8篇
  1981年   12篇
  1980年   9篇
  1979年   13篇
  1978年   6篇
  1977年   6篇
  1976年   3篇
  1975年   6篇
  1974年   6篇
  1973年   7篇
  1972年   3篇
  1971年   3篇
  1951年   1篇
排序方式: 共有457条查询结果,搜索用时 15 毫秒
181.
Based on geochronological, petrological, stratigraphical, and sedimentological data, this paper describes the deposits left by the most powerful Holocene eruption of Chachimbiro compound volcano, in the northern part of Ecuador. The eruption, dated between 3640 and 3510 years BC, extruded a ~650-m-wide and ~225-m-high rhyodacite dome, located 6.3 km east of the central vent, that exploded and produced a large pyroclastic density current (PDC) directed to the southeast followed by a sub-Plinian eruptive column drifted by the wind to the west. The PDC deposit comprises two main layers. The lower layer (L1) is massive, typically coarse-grained and fines-depleted, with abundant dense juvenile fragments from the outgassed dome crust. The upper layer (L2) consists of stratified coarse ash and lapilli laminae, with juvenile clasts showing a wide density range (0.7–2.6 g cm?3). The thickness of the whole deposit ranges from few decimeters on the hills to several meters in the valleys. Deposits extending across six valleys perpendicular to the flow direction allowed us to determine a minimum velocity of 120 m s?1. These characteristics show striking similarities with deposits of high-energy turbulent stratified currents and in particular directed blasts. The explosion destroyed most of the dome built during the eruption. Subsequently, the sub-Plinian phase left a decimeter-thick accidental-fragment-rich pumice layer in the Chachimbiro highlands. Juvenile clasts, rhyodacitic in composition (SiO2?=?68.3 wt%), represent the most differentiated magma of Chachimbiro volcano. Magma processes occurred at two different depths (~14.4 and 8.0 km). The hot (~936 °C) deep reservoir fed the central vent while the shallow reservoir (~858 °C) had an independent evolution, probably controlled by El Angel regional fault system. Such destructive eruptions, related to peripheral domes, are of critical importance for hazard assessment in large silicic volcanic complexes such as those forming the Frontal Volcanic Arc of Ecuador and Colombia.  相似文献   
182.
The influence of the natural variability of the Atlantic meridional overturning circulation (AMOC) on the atmosphere is studied in multi-centennial simulations of six global climate models, using Maximum Covariance Analysis (MCA). In all models, a significant but weak influence of the AMOC changes is found during the Northern Hemisphere cold-season, when the ocean leads the atmosphere by a few years. Although the oceanic pattern slightly varies, an intensification of the AMOC is followed in all models by a weak sea level pressure response that resembles a negative phase of the North Atlantic Oscillation (NAO). The signal amplitude is typically 0.5?hPa and explains about 10% of the yearly variability of the NAO in all models. The atmospheric response seems to be due primarily due to an increase of the heat loss along the North Atlantic Current and the subpolar gyre, associated with an AMOC-driven warming. Sea-ice changes appear to be less important. The stronger heating is associated to a southward shift of the lower-tropospheric baroclinicity and a decrease of the eddy activity in the North Atlantic storm track, which is consistent with the equivalent barotropic perturbation resembling the negative phase of the NAO. This study thus provides some evidence of an atmospheric signature of the AMOC in the cold-season, which may have some implications for the decadal predictability of climate in the North Atlantic region.  相似文献   
183.
Soil erosion induces soil redistribution within the landscape and thus contributes to the spatial variability of soil quality. This study complements a previous experimentation initiated by the authors focusing on soil redistribution as a result of soil erosion, as indicated by caesium‐137 (137Cs) measurements, in a small agricultural field in Canada. The spatial variability of soil organic matter (SOM) was characterized using geostatistics, which consider the randomized and structured nature of spatial variables and the spatial distribution of the samples. The spatial correlation of SOM (in percentages) patterns in the topsoil was established taking into account the spatial structure present in the data. A significant autocorrelation and reliable variograms were found with a R2 ≥ 0·9, thus demonstrating a strong spatial dependence. Ordinary Kriging (OK) interpolation provided the best cross validation (r2 = 0·35). OK and inverse distance weighting power two (IDW2) interpolation approaches produced similar estimates of the total SOM content of the topsoil (0–20 cm) of the experimental field, i.e. 211 and 213 tonnes, respectively. However, the two approaches produced differences in the spatial distribution patterns and the relative magnitude of some SOM content classes. The spatialization of SOM and soil redistribution variability – as evidenced by 137Cs measurements – is a first step towards the assessment of the impact of soil erosion on SOM losses to recommend conservation measures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
184.
A field survey was conducted on two intensive shrimp farms using similar technical practices: one (DF) historically affected by a vibriosis, the other (HC) in which the pathogen has been observed although no mortality event has occurred. Because historical data suggest that eutrophication process may directly or indirectly play a role in the disease outbreak, we focussed our research on its dynamics. A higher variability of the phytoplanktonic compartment linked to an imbalance in the molar N:P ratio was observed in farm DF compared to farm HC, implying a modification on the linkage between the bacteria and phytoplankton compartments at DF. The beginning of the mortality outbreak at DF followed a shift from pico- to nanophytoplankton. The organic matter mineralization process at the water-sediment interface may explain the disturbance observed in the water column during eutrophication. The consequences of this disturbance on shrimps’ health status and pathogen ecology are discussed.  相似文献   
185.
Fieldwork, radiometric (40Ar/39Ar and 14C) ages and whole-rock geochemistry allow a reconstruction of eruptive stages at the active, mainly dacitic, Pichincha Volcanic Complex (PVC), whose eruptions have repeatedly threatened Quito, most recently from 1999 to 2001. After the emplacement of basal lavas dated at ∼1100 to 900 ka, the eruptive activity of the old Rucu Pichincha volcano lasted from ∼850 ka to ∼150 ka before present (BP) and resulted in a 15 × 20 km-wide edifice, which comprises three main building stages: (1) A lower stratocone (Lower Rucu, ∼160 km3 in volume) developed from ∼850 to 600 ka; (2) This edifice was capped by a steeper-sided and less voluminous cone (the Upper Rucu, 40–50 km3), the history of which started 450–430 ka ago and ended around 250 ka with a sector collapse; (3) A smaller (8–10 km3) but more explosive edifice grew in the avalanche amphitheatre and ended Rucu Pichincha's history about 150 ka ago. The Guagua Pichincha volcano (GGP) was developed from 60 ka on the western flank of Rucu with four growth stages separated by major catastrophic events. (1) From ∼60 to 47 ka, a basal effusive stratocone developed, terminating with a large ash-and-pumice flow event. (2) This basal volcano was followed by a long-lasting dome building stage and related explosive episodes, the latter occurring between 28–30 and 22–23 ka. These first two stages formed the main GGP (∼30 km3), a large part of which was removed by a major collapse 11 ka BP. (3) Sustained explosive activity and viscous lava extrusions gave rise to a new edifice, Toaza (4–5 km3 in volume), which in turn collapsed around 4 ka BP. (4) The ensuing amphitheatre was partly filled by the ∼1-km3 Cristal dome, which is the historically active centre of the Pichincha complex. The average output rate for the whole PVC is 0.29 km3/ka. Nevertheless, the chronostratigraphic resolution we obtained for Lower Rucu Pichincha and for the two main edifices of Guagua Pichincha (main GGP and Toaza), leads to eruptive rates of 0.60–0.65 km3/ka during these construction stages. These output rates are compared to those of other mainly dacitic volcanoes from continental arcs. Our study also supports an overall SiO2 and large-ion lithophile elements enrichment as the PVC develops. In particular, distinctive geochemical signatures indicate the involvement of a new magma batch at the transition between Rucu and Guagua. At the GGP, the same phenomenon occurs at each major collapse event marking the onset of the ensuing magmatic stage. Since the 11-ka-BP collapse event, this magmatic behaviour has led to increasingly explosive activity. Four explosive cycles of between 100 and 200 years long have taken place at the Cristal dome in the past 3.7 ka, and repose intervals between these cycles have tended to decrease with time. As a consequence, we suggest that the 1999–2001 eruptive period may have initiated a new eruptive cycle that might pose a future hazard to Quito (∼2 million inhabitants).  相似文献   
186.
Lahars (volcanic debris flows) have been responsible for 40% of all volcanic fatalities over the past century. Mount Semeru (East Java, Indonesia) is a persistently active composite volcano that threatens approximately one million people with its lahars and pyroclastic flows. Despite their regularity, the behaviour and the propagation of these rain‐triggered lahars are poorly understood. In situ samples were taken from lahars in motion at two sites in the Curah Lengkong River, on the southeast flank of Semeru, providing estimates of the particle concentration, grain size spectrum, grain density and composition. This enables us to identify flow sediment from three categories of lahars: (a) hyperconcentrated flow, (b) non‐cohesive, clast‐ and matrix‐supported debris flow, and (c) muddy flood. To understand hyperconcentrated flow sediment transport processes, it is more appropriate to sample the active flows than the post‐event lahar deposits because in situ sampling retains the full spectrum of the grain‐size distribution. Rheometrical tests on materials sampled from moving hyperconcentrated flows were carried out using a laboratory vane rheometer. Despite technical difficulties, results obtained on the <63, <180, and <400 µm fractions of the sampled sediment, suggest a purely frictional behaviour. Importantly, and contrary to previous experiments conducted with monodisperse suspensions, our results do not show any transition towards a viscous behaviour for high shear rates. These data provide important constraints for future physical and numerical modelling of lahar flows. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
187.
Cheniers from Mont‐Saint‐Michel bay (France) are coarse shelly sand ridges migrating on the mudflat up to the salt marshes where they accumulate and merge in a littoral barrier. In this macrotidal setting and low wave forcing, the cheniers are rarely submerged. However, they are found to move up to several metres during coincidence of spring tide and wave activity. Their processes of migration, morphology and internal structure (composition of the beddings, grain size, sorting and grain arrangement) are thought to be closely related to the hydrodynamic behaviour of the coarse and shelly sediment. This paper focuses on the hydrodynamic behaviour of bioclastic sand sampled from the cheniers: settling velocities of the shell fragments were measured using a 2 m long sedimentation tube. Thresholds of motion under unidirectional current, velocity and turbulence vertical profiles were characterized in a small recirculating flume using Laser Doppler Anemometry (LDA). The flat‐shaped bioclastic particles feature low settling velocities and reveal a good resistance to the re‐suspension effect of the flow when imbricated in a sediment bed. The shear stress in the bottom boundary layer has been measured in the viscous and log sub‐layers. Nikuradse roughness heights (ks) for shell debris beds of different sizes have been quantified. It is found that ks ≈ 2·56d50. This value is close to the ones used for classic rounded sand grains despite their major differences of shape. The dual behaviour of the shell fragments (low settling velocity, good resistance to unidirectional flow) should be considered as a key to understanding how this coarse material is transported across the tidal flat, and finally accumulated as cheniers. Further flume experiments including wave activity and tidal fluctuations are necessary to better quantify these complex processes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
188.
A 1-year survey of sediment dynamics on the Têt inner-shelf in the south-western part of the Gulf of Lions was conducted as part of the EUROSTRATAFORM program (European Margin Strata Formation) from October 2004 to November 2005. Several bottom instruments (ADCP, wave gauge and altimeters) were deployed at 28 m water depth on the Têt prodelta to measure forcing responsible for sediment erosion and transport on the inner-shelf.  相似文献   
189.
Dense water formed over the continental shelf and cascading down the slope is responsible for shelf-slope exchanges in many parts of the world ocean, and transports large amounts of sediment and organic matter into the deep ocean. Here we perform numerical modeling experiments to investigate the impact of atmospheric interannual variability and climate change on dense water formation over the Gulf of Lions shelf, in the Northwestern Mediterranean Sea. Results obtained for a 140 years eddy-permitting simulation (1960–2100) performed over the whole Mediterranean Sea under IPCC A2 scenario forcings are used to force a regional eddy-resolving model of the Northwestern Mediterranean Sea.  相似文献   
190.
Prospects for an Earth-orbiting planetary observatory are fairly high for the next decade. Therefore, scientific priorities, subsequent requirements and their instrumental consequences have to be carefully analyzed.Detailed studies of spatio-temporal variations in the composition and chemistry of planetary atmospheres are of prime importance for the understanding of their evolution. Ultraviolet observations with an imaging spectrograph would be a means of partially fulfilling this objective. The performances of such an imaging spectrograph are studied in the case of observations of molecular absorption features in planetary atmospheres. A simple model of the source is used to simulate three-dimensional (spectral, spatial and temporal) data sets. We propose a method of data reduction which consists in focusing the images corresponding to different positions of the absorbing areas on the disk back onto a common frame of reference. The influence of the various parameters defining the absorption structure in the source on the contrast and width of the observed absorption dip is investigated as a function of the spectral dispersion of the instrument, as well as the effect due to spurious assumptions on the longitudinal position of the absorption area. A comparison with the performances of a long slit spectrograph capable of performing similar measurements shows that the objective grating concept, when it is optimized to the particular absorption bands of interest, has a significant advantage in terms of sensitivity, simultaneous spatial coverage and data reduction flexibility.
Résumé Il est probable qu'un observatoire planétaire orbital verra le jour dans les dix ans qui viennent. Par conséquent, il est nécessaire d'analyser avec soin les priorités scientifiques d'un tel observatoire, les contraintes qui en découleraient et leur traduction sur le plan instrumental.L'étude détaillée des variations spatio-temporelles dans la composition et la chimie des atmosphères planétaires est de premiére importance pour la compréhension de leur évolution. La possibilité d'observer dans l'ultraviolet moyen avec un spectrographe imageur serait un moyen de répondre au moins partiellement à cet objectif. Les performances d'un tel instrument appliqué à l'observation de structures d'absorption moléculaire dans les atmosphères planétaires sont le sujet de la présente étude. Un modèle simple de la source est utilisé pour simuler les données tri-dimensionnelles (spectrales, spatiales et temporelles). Nous proposons une méthode de réduction des données qui consiste à ajouter dans un système de référence commun les images correspondant aux positions successives d'une région d'absorption sur le disque. L'influence des divers paramètres qui définissent la structure d'absorption sur le contraste et la largeur de la région d'absorption telle qu'elle est observée dans les données réduites, est étudiée en fonction de la dispersion spectrale de l'instrument, de même que les effets produits par des hypothèses erronées sur la position longitudinale de cette structure. Comparé un spectrographe à fente de caractéristiques identiques, le concept à réseau objectif, dans la mesure où il est optimisé pour les bandes d'absorption intéressantes, apparait présenter un avantage significatif en termes de sensibilité, de couverture spatiale simultanée et de souplesse dans le traitement des données.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号