首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43381篇
  免费   849篇
  国内免费   364篇
测绘学   999篇
大气科学   2420篇
地球物理   9226篇
地质学   17264篇
海洋学   3855篇
天文学   9194篇
综合类   282篇
自然地理   1354篇
  2022年   494篇
  2021年   713篇
  2020年   762篇
  2019年   837篇
  2018年   2247篇
  2017年   2028篇
  2016年   1921篇
  2015年   775篇
  2014年   1557篇
  2013年   2159篇
  2012年   2290篇
  2011年   2340篇
  2010年   1920篇
  2009年   2127篇
  2008年   1897篇
  2007年   2103篇
  2006年   1868篇
  2005年   1906篇
  2004年   2023篇
  2003年   1656篇
  2002年   923篇
  2001年   837篇
  2000年   679篇
  1999年   433篇
  1998年   443篇
  1997年   496篇
  1996年   348篇
  1995年   360篇
  1994年   336篇
  1993年   282篇
  1992年   285篇
  1991年   298篇
  1990年   329篇
  1989年   263篇
  1988年   253篇
  1987年   260篇
  1986年   187篇
  1985年   299篇
  1984年   295篇
  1983年   291篇
  1982年   269篇
  1981年   249篇
  1980年   269篇
  1979年   197篇
  1978年   242篇
  1977年   202篇
  1976年   176篇
  1975年   187篇
  1974年   171篇
  1973年   208篇
排序方式: 共有10000条查询结果,搜索用时 173 毫秒
991.
The Trypali carbonate unit (Upper Triassic), which crops out mainly in central‐western Crete, occurs between the parautochthonous series (Plattenkalk or Talea Ori‐Ida series, e.g. metamorphic Ionian series) and the Tripolis nappe (comprising the Tripolis carbonate series and including a basal Phyllite–Quartzite unit). It consists of interbedded dolomitic layers, represented principally by algally laminated peloidal mudstones, foraminiferal, peloidal and ooidal grainstones, as well as by fine‐grained detrital carbonate layers, in which coarse baroque dolomite crystals and dolomite nodules are dispersed. Baroque dolomite is present as pseudomorphs after evaporite crystals (nodules and rosettes), which grew penecontemporaneously by displacement and/or replacement of the host sediments (sabkha diagenesis). However, portions of the evaporites show evidence of resedimentation. Pre‐existing evaporites predominantly consisted of skeletal halite crystals that formed from fragmentation of pyramidal‐shaped hoppers, as well as of anhydrite nodules and rosettes (salt crusts). All microfacies are characteristic of peritidal depositional environments, such as sabkhas, tidal flats, shallow hypersaline lagoons, tidal bars and/or tidal channels. Along most horizons, the Trypali unit is strongly brecciated. These breccias are of solution‐collapse origin, forming after the removal of evaporite beds. Evaporite‐related diagenetic fabrics show that there was extensive dissolution and replacement of pre‐existing evaporites, which resulted in solution‐collapse of the carbonate beds. Evaporite replacement fabrics, including calcitized and silicified evaporite crystals, are present in cements in the carbonate breccias. Brecciation was a multistage process; it started in the Triassic, but was most active in the Tertiary, in association with uplift and ground‐water flow (telogenetic alteration). During late diagenesis, in zones of intense evaporite leaching and brecciation, solution‐collapse breccias were transformed to rauhwackes. The Trypali carbonate breccias (Trypali unit) are lithologically and texturally similar to the Triassic solution‐collapse breccias of the Ionian zone (continental Greece). The evaporites probably represent a major diapiric injection along the base of the parautochthonous series (metamorphic Ionian series) and also along the overthrust surface separating the parautochthonous series from the Tripolis nappe (Phyllite–Quartzite and Tripolis series). The injected evaporites were subsequently transformed into solution‐collapse breccias.  相似文献   
992.
A combined volcanological, geochemical, paleo-oceanological, geochronological and geophysical study was undertaken on the Kurile Basin, in order to constrain the origin and evolution of this basin. Very high rates of subsidence were determined for the northeastern floor and margin of the Kurile Basin. Dredged volcanic samples from the Geophysicist Seamount, which were formed under subaerial or shallow water conditions but are presently located at depths in excess of 2300 m, were dated at 0.84±0.06 and 1.07±0.04 Ma with the laser 40Ar/39Ar single crystal method, yielding a minimum average subsidence rate of 1.6 mm/year for the northeast basin floor in the Quaternary. Trace element and Sr–Nd–Pb isotope data from the volcanic rocks show evidence for contamination within lower continental crust and/or the subcontinental lithospheric mantle, indicating that the basement presently at 6-km depth is likely to represent thinned continental crust. Average subsidence rates of 0.5–2.0 mm/year were estimated for the northeastern slope of the Kurile Basin during the Pliocene and Quaternary through the determination of the age and paleo-environment (depth) of formation of sediments from a canyon wall. Taken together, the data from the northeastern part of the Kurile Basin indicate that subsidence began in or prior to the Early Pliocene and that subsidence rates have increased in the Quaternary. Similar rates of subsidence have been obtained from published studies on the Sakhalin Shelf and Slope and from volcanoes in the rear of the Kurile Arc. The recent stress field of the Kurile Basin is inferred from the analysis of seismic activity, focal mechanism solutions and from the structure of the sedimentary cover and of the Alaid back-arc volcano. Integration of these results suggests that compression is responsible for the rapid subsidence of the Kurile Basin and that subsidence may be an important step in the transition from basin formation to its destruction. The compression of the Kurile Basin results from squeezing of the Okhotsk Plate between four major plates: the Pacific, North American, Eurasian and Amur. We predict that continued compression could lead to subduction of the Kurile Basin floor beneath Hokkaido and the Kurile Arc in the future and thus to basin closure.  相似文献   
993.
The sulfur, paraffin, resin and asphaltene contents of some 6570 Cenozoic, Mesozoic and Paleozoic Eurasian oils were analysed statistically in terms of reservoir age and depth. The database includes all principal oil-bearing basins from 60 Eurasian countries. The results of the studies of the relationships between the distribution of oils with different sulfur, paraffin, resin and asphaltene contents and the reservoir age and depth are presented. Predictive trends are established allowing polynomial predictions of average properties.  相似文献   
994.
Petrologic and geochronological work was carried out on a roadside outcrop of amphibolite facies orthogneisses near São Lourenço da Serra, about 50 km southwest of São Paulo City. These orthogneisses belong to the Embu Complex, within the Neoproterozoic Brasiliano Orogenic Cycle mobile belts of SE Brazil. The outcrop consists of predominantly foliated biotite tonalites and granodiorites, which were cut by granitic veins and pegmatites prior to final deformation. SHRIMP U/Pb measurements on zircons from one granodioritic–tonalitic gneiss indicate magmatic crystallization of the protolith at 811±13 Ma (MSWD=1.0). Zircons with dates of ca. 2000 and ca. 1000 Ma in this rock are interpreted as inherited from older crust. One zircon analyzed from the gneiss and three zircons from a discordant pegmatitic vein indicate an event at 650–700 Ma, perhaps related to the intrusion of the pegmatites. A regression of Rb–Sr whole rock data for four biotite gneisses yielded an imperfect isochron, giving an apparent age of 821±68 Ma and an elevated initial 87Sr/86Sr ratio of 0.719±0.005. The elevated initial 87Sr/86Sr ratio and the inherited zircons indicate involvement of older crust in the genesis of the gneisses. Rb–Sr feldspar and whole rock pairs yield ca. 560 Ma tielines, giving the time of final cooling below 300–350 °C, and the cessation of medium-grade metamorphism and ductile deformation. These results document a series of tectono-thermal events spanning 250 million years during the Brasiliano Orogenic Cycle. They relate to ca. 800 Ma magmatic arc activity and later allochthonous terrane assembly during closure of the Adamastor Ocean, resulting in the accretion of Western Gondwana.  相似文献   
995.
996.
 Amphiboles were synthesized from bulk compositions prepared along the join Ca1.8Mg5.2Si8O22(OH)2–Ca1.8Mg3Ga4Si6O22(OH)2 hydrothermally at 750–850 °C and 1.0–1.8 GPa, and along the join Ca2Mg5Si8O22F2–Ca2Mg3Ga4Si6O22F2, anhydrously at 1000 °C and 0.7 GPa to document how closely the tschermak-type substitution is obeyed in these analogues of aluminous amphiboles. Electron-microprobe analyses and Rietveld X-ray diffraction structure refinements were performed to determine cation site occupancies. The extent of Ga substitution was found to be limited in both joins, but with the fluorine series having about twice the Ga content (0.6 atoms per formula unit, apfu) of the hydroxyl-series amphiboles (0.3 apfu). The tschermak-type substitution was followed very closely in the hydroxyl series with essentially equal partitioning of Ga between tetrahedral and octahedral sites. The fluorine-series amphiboles deviated significantly from the tschermak-type substitution and, instead, appeared to follow a substitution that is close to a Ca-pargasite substitution of the type: [6]Ga3++2[4]Ga3++1/2[A] Ca2+ = [6]Mg2++2[4]Si4++1/2[A]□. Infrared spectroscopy revealed an inverse correlation between the intensity of the OH-stretching bands and the Ga content for the hydroxyl- and fluorine-series amphiboles. The direct correlation between the Ga and F content and inverse relationship between the Ga and OH content may be a general phenomenon present in other minerals and suggests, for example, that high F contents in titanite are controlled by the Al content of the host rock and that there may be similar direct Al–F correlations in tschermakitic amphiboles. Evidence for the possibility that Al (Ga) might substitute onto only a subset of the tetrahedral sites in tschermakitic amphiboles was sought but not observed in this study. Received: 5 March 2001 / Accepted: 31 July 2001  相似文献   
997.
A novel method for synthesis of aluminium hematites, based upon the homogeneous precipitation of Fe and Al oxinates in various proportions, is presented. The precursor precipitates are heated in air at 700?°C. X-ray diffraction, thermal analyses, BET, FTIR, optical reflection analysis, TEM and Mössbauer spectroscopy at room temperature and 80?K of the resulting products indicate that single-phase hematites are formed with structural Al substitution of up to 10 at%. Interestingly, the particle size (>100?nm) is not substantially reduced by the Al content. Although it remains difficult to obtain a homogeneously distributed Al substitution in the final hematite, this processing line offers a unique opportunity to separate the effects of grain size and Al substitution on the Morin transition temperature (T M) of Al hematite. From the comparison between the present hematites and a series of Al-substituted hematites with lepidocrocite as precursor, it could be shown that the effect on T M, associated with a change of a factor 10 in grain size, is about 1/3 of the effect caused by a change of 10 in the degree of substitution. Finally, it is suggested that proper thermal treatments under different conditions of the same precursors are likely to produce spinel phases.  相似文献   
998.
Twenty-five uniaxial compression tests were performed to determine stress at onset of dilation, referred to herein as “the crack damage stress,” in heterogeneous dolomites and limestones. A simplified model for crack damage stress (σcd) is developed here using porosity, elastic modulus, Poisson's ratio and three empirical coefficients. The model shows that when porosity decreases and elastic modulus increases, σcd rapidly increases and approaches its maximum value. On the other hand, when porosity increases and elastic modulus decreases, σcd rapidly decreases and approaches its minimum value. The proposed model is validated for six heterogeneous limestone and dolomite formations which are widely distributed in Israel.  相似文献   
999.
The peraluminous tonalite–monzogranite Port Mouton Pluton is a petrological, geochemical, structural, and geochronological anomaly among the many Late Devonian granitoid intrusions of the Meguma Lithotectonic Zone of southern Nova Scotia. The most remarkable structural feature of this pluton is a 4-km-wide zone of strongly foliated (040/subvertical) monzogranites culminating in a narrow (10–30 m), straight, zone of compositionally banded rocks that extends for at least 3 km along strike. The banded monzogranites consist of alternating melanocratic and leucocratic compositions that are complementary to the overall composition of that part of the pluton, suggesting an origin by mineral–melt and mineral–mineral sorting. Biotite and feldspar are strongly foliated in the plane of the compositional bands. These compositional variations and foliations originated by a process of segregation flow during shearing of the main magma with a crystallinity of 55–75%. Subsequent minor brittle fracturing of feldspars, twinning of microcline, development of blocky sub-grains in quartz, and kinking of micas demonstrate overprinting by a high-temperature deformation straddling the monzogranite solidus. Small folds and late sigmoidal dykes indicate dextral movement on the shear zone. This Port Mouton Shear Zone (PMSZ) is approximately co-linear with the only outcrops of Late Devonian mafic intrusions in the area, two of which are syn-plutonic with well-developed mingling textures in the marginal tonalite of the Port Mouton Pluton. Also closely co-linear with the mafic intrusions are a granitoid dyke that extends well beyond the outer contact of the Port Mouton Pluton, a swarm of large aligned angular xenolithic slabs, a zone of thin wispy schlieren banding, a large Be-bearing pegmatite, and a breccia pipe with abundant garnetiferous metapelitic xenoliths. In various ways, the shear zone may control all of these features. The Port Mouton Shear Zone is parallel to many other NE-trending faults and shear zones in the northern Appalachians, probably related to the docking of the Meguma Zone along the Cobequid–Chedabucto Fault system.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号