首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
大气科学   1篇
地球物理   2篇
地质学   6篇
海洋学   16篇
  2020年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2000年   2篇
  1998年   3篇
  1997年   1篇
  1995年   2篇
  1993年   2篇
  1987年   1篇
  1985年   1篇
  1984年   4篇
  1980年   1篇
排序方式: 共有25条查询结果,搜索用时 0 毫秒
21.
ABSTRACT

Santa agricultural area is a key production site for crops in Cameroon. This study aimed to look at the risk factors, knowledge and health implications of water pollution across 10 villages, in the area: 140 water points were visited and questionnaires randomly administered to water users, while health data were collected from the two local hospitals. Water sources are tap, stream, rain, well and spring and the water is used for agriculture, domestic activities, hygiene and sanitation. Pesticide pollution was illustrated by activities such as spraying, mixing and management of waste containers and purification methods are chlorination, boiling, sedimentation, filtration and refrigeration. Waterborne diseases are cholera, typhoid (the most prevalent), diarrhea, dysentery and skin diseases. Many water sources are close to toilets, farms and dumping sites. We found that 75% of respondents were not satisfied with the quality of water. Our results will be interest for water management, and to educate users on the risks linked to current practices.  相似文献   
22.
Preliminary measurements of sulfide in seawater using cathodic stripping voltammetry and a hanging mercury drop electrode (HMDE) in batch-mode showed that the sulfide peak decreased rapidly with time. This decrease was not caused by O2, H2O2 or IO3, and the sulfide peak was not stabilised by trace metal additions. A home-made flow-cell was constructed to enable the determination of sulfide in seawater using voltammetry with an HMDE. A stable sulfide peak was obtained by flow-analysis with voltammetric detection, with a precision of 2.8% and detection limit of 0.5 nM at a 60 s adsorption time. Several thiol compounds were found to produce a peak at, or very close to, the peak potential for sulfide. Their interference was evaluated by allowing the sulfide peak in conventional (batch) voltammetry to decay. Comparative experiments showed that waste metallic mercury is responsible for removal of sulfide in batch-mode analysis due to formation of insoluble mercuric sulfide salts causing the rapid decay of the sulfide peak. The problem is circumvented by using flow-analysis to determine sulfide.  相似文献   
23.
The ubiquitous algal species, Emiliania huxleyi, was incubated in sea water supplemented only with nitrate and phosphate (N and P) without chelating agents to control metal speciation. Growth was slow in a “low-iron” culture containing 1.3 nM iron and was found to be iron-limited, growth-accelerating when a 1-nM iron addition was made. The growth rate in a “high-iron” culture (5.4 nM iron) was greater, reaching 0.4 div day−1 but this culture too was found to have become iron-limited when a 9-nM iron addition was made on day 17 of the incubation. Both cultures were found to release iron-complexing ligands in excess of the iron concentration, 6 nM in the low-iron culture, and 10 nM in the high-iron culture. More ligands were produced after the iron addition taking the ligand concentration to 11 nM in the low-iron culture. The data show that the ligands are released in response to the iron addition, when at least some of the iron had already been taken up. This type of release is contrary to the concept of a siderophore, which is supposed to be released in periods of lack of iron; however the increase in the ligand concentration is similar to that released by the natural community in response to the iron addition in the IRON-EX II experiment [Rue, E.L., Bruland, K.W., 1997. The role of organic complexation on ambient iron chemistry in the equatorial Pacific Ocean and the response of a mesoscale iron addition experiment. Limnol. Oceanogr. 42, 901–910]. The enhanced growth in the cultures when more iron was added indicated that the organically complexed iron present in the cultures was not immediately available to the organisms (or at least not at sufficiently high rate), and that the organisms responded to freshly added, inorganic, iron.  相似文献   
24.
Continental inputs of copper via rivers and sewage into the Vigo Ria were evaluated. The main fluvial input is not contaminated and the most degraded discharges occur on the southern margin of the middle ria. Continental inputs of copper and ligands to the ria are dominated by sewage treatment plants (136 mol Cu day(-1), 124 mol L day(-1)) supported by rivers (15 mol Cu day(-1), 21 mol L day(-1)). The dissolved fraction is the main channel of discharge for rivers (66%) with particulate matter being predominant in sewage (63%). Dissolved copper is organically complexed both in rivers (99.8%) and sewage (99.9%). This minor difference may be attributed to the fact that the stability of sewage complexes is greater than those in rivers. Moreover, ligand concentrations are higher in sewage than in rivers. Thus, the natural continental inputs of copper and ligands into the ria are magnified by anthropogenic inputs (5-15 and 3-5 times higher for copper and ligands, respectively).  相似文献   
25.
A novel technique to determine complexing capacities for zinc is presented. The free zinc concentration is determined by cathodic stripping voltammetry preceded by adsorptive collection of complexes of zinc with ammonium pyrrolidine dithiocarbamate (APDC). The reduction peak of zinc is depressed as a result of ligand competition by natural organic material in the sample. Sufficient time is allowed to reach equilibrium between this material and added APDC, and equilibrium is maintained during the measurement. Both electrochemically reversible and irreversible complexes can therefore be investigated. Values for KZnAPDC are calibrated against NTA and EDTA in seawater of several salinities; log KZnAPDC was found to be 4.40 at 36‰, 4.36 at 24‰, 4.43 at 12‰, and 4.87 at 2.3‰. The ligand concentration and conditional stability constant, KZnL, for complexing ligands in a sample from the Irish Sea were determined in the presence of 4 × 10?5 M APDC and with added zinc concentrations between 5 × 10?9 and 3 × 10?7 M. The data best fitted a complexation model containing two ligands with concentrations of 2.6 and 6.2 and 10?8 M, and with values for log KZnL of 8.4 and 7.5, respectively. These results are comparable to those obtained with other equilibrium techniques, but the values of the constants are greater than those from ASV measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号