首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
  国内免费   1篇
大气科学   1篇
地球物理   7篇
地质学   5篇
天文学   4篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2008年   1篇
  1981年   1篇
排序方式: 共有17条查询结果,搜索用时 140 毫秒
11.
12.
A new patchwork simulation method with control of the local-mean histogram   总被引:3,自引:3,他引:0  
We present a new stochastic simulation method that builds two-dimensional images by assembling together square image pieces called blocks. The blocks are taken from a reference image. Our method, called patchwork simulation method (PSM), enforces pattern continuity in the image. Moreover, PSM allows to control the image local-mean histogram. This histogram bin-frequencies can be set to user-defined target values that may differ from the reference image local-mean histogram. This flexibility enhances the PSM generality by enlarging the set of all possible simulations. The local-mean histogram control is achieved by adjusting suitably the transition probabilities that associate a new block to an existing neighborhood in the partly simulated image. For several types of synthetic images and one polymer blend image, we show that PSM reproduces faithfully the reference image visual appearance (i.e. patterns are correctly shaped) and that simulated images are statistically compatible with the target local-mean histogram. Moreover, we show that our method has the ability to produce simulations that respect conditional hard data as well as a target local-mean histogram.  相似文献   
13.
Abstract– The insoluble carbonaceous matter from 12 chondrites (CI, CM, CO, CV, EH, and UOC), was characterized by high resolution transmission electron microscopy (HRTEM). Besides ubiquitous nanoglobules, the insoluble organic matter from petrologic type 1 and 2 chondrites and Semarkona (LL 3.0) is composed of a highly disordered polyaromatic component. No structural differences were observed between these IOMs, in agreement with the limited thermal metamorphism they all experienced. In chondrites of petrologic type >3.0, the evolution of the IOM is controlled by the extent of thermal metamorphism. The polyaromatic layers, shorter than 1 nm in petrologic type ≤3.0 chondrites, grow up to sizes between 5 and 10 nm in petrologic type >3.6 chondrites, contributing to the increase of the degree of structural order. In addition, we find rare, but ubiquitous onion‐like carbons, which may be the product of nanodiamond graphitization. The insoluble carbonaceous matter of the enstatite chondrite Sahara 97096 (EH 3) is different from the other meteorites studied here. It is more heterogeneous and displays a high abundance of graphitized particles. This may be the result of a mixture between (1) the disordered carbon located in the matrix, and (2) catalytic graphitized phases associated with metal, potentially originating from partial melting events. The structural and nanostructural evolution are similar in all IOMs. This suggests that the structure of the accreted precursors and the parent body conditions of their secondary thermal modifications (temperature, duration, and pressure) were similar. The limited degree of organization of the most metamorphosed IOMs compared with terrestrial rocks submitted to similar temperature suggests that the conditions are not favorable to graphitization processes, due to the chemical nature of the precursor or the lack of confinement pressure.  相似文献   
14.
A geochemical study has been undertaken on the Vourinos ophiolites, northern Greece, a complex long known for its unusual characteristics such as an environment of acidic rocks and a calc-alkaline chemical affinity. The Nd-Sr isotopic ratios and the Hf/Th and Ta/Th ratios are indicative of an island arc origin for Vourinos as opposed to the mid-oceanic ridge origin inferred for other ophiolites such as Inzecca, Corsica. Other data on trace elements confirm that the cumulative suite and the lavas originated from the same magma through a simple fractional crystallization process and show that this magma would have formed through partial melting of an already highly-depleted material. It is thus possible to distinguish ophiolites with MORB characteristics from island arc ophiolites such as the Vourinos Complex, the existence of the latter type imposing new constraints on the possible tectonic processes for emplacement.  相似文献   
15.
The main purpose of this paper is to analyze the convergence measurements in drifts of the Underground Research Laboratory (URL) of the French National Radioactive Waste Management Agency (Andra), excavated in Callovo-Oxfordian claystone. These measurements show an anisotropic closure, which depends on the drift orientations with respect to the horizontal in situ stresses. This anisotropic character of the deformation is taken into account by assuming that the drifts section evolves following an elliptical shape. The characteristics of the deformed elliptical section are evaluated following the methodology proposed by Vu et al. (Rock Mech Rock Eng 46:231–246, 2013). Then, using the semi-empirical law proposed by Sulem et al. (Int J Rock Mech Min Sci Geomech Abstr 24:145–154, 1987), the convergence evolution is fitted independently for each axis of the ellipse. This method allows to distinguish two effects: the face advance and the time-dependent behavior of the ground. The results for the two drift orientations (along the major horizontal stress and perpendicular to it) show very close values for the parameters describing the time-dependent properties of the ground, the distance of influence of the face, and the extent of the decompressed zone around the drift. Finally, the model is validated by keeping these parameters as constants and by simulating the convergence data on a new drift. It is shown that with a period of about 40 days of convergence monitoring, the model can provide valuable insights for predictions of the convergence evolution in the long term.  相似文献   
16.
17.
Abstract– The insoluble organic matter (IOM) of an unequilibrated enstatite chondrite Sahara (SAH) 97096 has been investigated using a battery of analytical techniques. As the enstatite chondrites are thought to have formed in a reduced environment at higher temperatures than carbonaceous chondrites, they constitute an interesting comparative material to test the heterogeneities of the IOM in the solar system and to constrain the processes that could affect IOM during solar system evolution. The SAH 97096 IOM is found in situ: as submicrometer grains in the network of fine‐grained matrix occurring mostly around chondrules and as inclusions in metallic nodules, where the carbonaceous matter appears to be more graphitized. IOM in these two settings has very similar δ15N and δ13C; this supports the idea that graphitized inclusions in metal could be formed by metal catalytic graphitization of matrix IOM. A detailed comparison between the IOM extracted from a fresh part and a terrestrially weathered part of SAH 97096 shows the similarity between both IOM samples in spite of the high degree of mineral alteration in the latter. The isolated IOM exhibits a heterogeneous polyaromatic macromolecular structure, sometimes highly graphitized, without any detectable free radicals and deuterium‐heterogeneity and having mean H‐ and N‐isotopic compositions in the range of values observed for carbonaceous chondrites. It contains some submicrometer‐sized areas highly enriched in 15N (δ15N up to 1600‰). These observations reinforce the idea that the IOM found in carbonaceous chondrites is a common component widespread in the solar system. Most of the features of SAH 97096 IOM could be explained by the thermal modification of this main component.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号