首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   3篇
大气科学   2篇
地球物理   35篇
地质学   24篇
海洋学   3篇
天文学   22篇
自然地理   3篇
  2022年   3篇
  2020年   1篇
  2017年   4篇
  2016年   5篇
  2015年   1篇
  2014年   5篇
  2013年   3篇
  2012年   5篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   8篇
  2007年   5篇
  2006年   10篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2000年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1987年   1篇
  1986年   3篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1977年   1篇
排序方式: 共有89条查询结果,搜索用时 31 毫秒
11.
The Phlegraean Fields are a densely inhabited volcanic area which includes part of the city of Napoli. During the past 2,000 years it has been subject to slow vertical movements (bradyseisms). A rapid uplift was observed in early 1970, which caused alarm in the population. Ground deformation started to be monitored by means of tide gauge observations and topographic levelling, making it possible to define the area interested in the phenomenon and to outline the pattern of deformation. Vertical deformation data are well fitted by radially symmetric sources, such as the Mogi’s model, while horizontal deformation data are best fitted by a linear source model. Contemporaneously, a tight seismic network was installed in the area. The frequency of seismic events and the released energies have shown that the seismicity of the volcanic area is very low. Seismic activity evolved both with regard to the relative occurrence rate of various kinds of shock and to the distribution of epicentres. The values of the Ishimoto-Iida coefficient, calculated for three kinds of shock, show that the focal medium is very heterogeneous down to a depth of a few kilometres. Observations suggest that the origin of the ground uplift can be attributed to the intrusion of magmatic masses. This hypothesis is coherent with data and is supported by structural information. Available data allow a rough estimation of the maximum magnitude possible for an earthquake with epicenter in the Phlegraean Fields.  相似文献   
12.
Slopes that are terraced by means of dry-stone retaining walls are very common in the alpine environment. In Valtellina, a typical Italian alpine valley, these slopes are widespread and quite often involved in superficial mass movements that can result in severe damage and casualties. For an in-depth understanding of the processes that can trigger these events, numerical modeling of groundwater movement and a related stability analysis were performed on a detailed scale, based on an intensive monitoring of rainfall events and groundwater movement. Field observations suggest that the formation of a perched groundwater table at the contact between the bedrock and the backfill soil of walls as well as the concomitant saturation of this backfill soil are the determining factors of potential slope failure. The numerical models support these observations. In addition, the models are able to explain the mechanisms of formation of perched water tables, highlighting the factors that can influence groundwater levels and slope instabilities.  相似文献   
13.
A lower bound for the mass of a rotating body is derived in the general relativity theory with positive cosmological term Λ. The bound suggests a neutrino rest mass ∼1 meV and a neutrino magnetic moment of 10−41 erg/gauss ∼ Planck's magnetic moment. A connection between gravity and electroweak interaction is suggested.  相似文献   
14.
On October 30, 2016, a seismic event and its aftershocks produced diffuse landslides along the SP 209 road in the Nera River Gorge (Central Italy). Due to the steep slopes and the outcropping of highly fractured and bedded limestone, several rockfalls were triggered, of which the main event occurred on the slope of Mount Sasso Pizzuto. The seismic shock acted on a rock wedge that, after an initial slide, developed into a rockfall. The debris accumulation blocked the SP 209 road and dammed the Nera River, forming a small lake. The river discharge was around 3.6 m3/s; the water overtopped the dam and flooded the road. By a preliminary topographic survey, we estimated that the debris accumulation covers an area of about 16,500 m2, while the volume is around 70,000 m3. The maximum volume occupied by the pre-existing talus mobilized by the rockfall is about 20% of the total volume. Besides blocking the road, the rockfall damaged a bridge severely, while, downstream of the dam, the water flow caused erosion of a road embankment. A rockfall protection gallery, a few hundred meters downstream of the dam, was damaged during the event. Other elastic nets and rigid barriers were not sufficient to protect the road from single-block rockfalls, with volumes around 1–2 m3. Considering the geological and geomorphological conditions, as well as the high seismicity and the socioeconomic importance of the area, a review of the entire rockfall protection systems is required to ensure protection of critical infrastructure and local communities.  相似文献   
15.
16.
17.
A simple model describing the transformation of effective rainfall to direct runoff through the overland flow mechanism is presented. The model is based on the classical representation of a watershed by a combination of planes and channels. The dynamics of overland flow in each plane is simulated by the non-linear kinematic wave, but the outflow from a given plane is concentrated in the middle of the corresponding drainage channel. The water routing in the channels is carried out by a piece-wise linearized formulation in space of the kinematic wave approximation. Using synthetic events on 10 watersheds, the model was tested by comparing it with results obtained by applying the non-linear kinematic wave to all the elements of the watershed. The model was found to be adequate, even in a form that simplifies the geometric features of the planes through an averaging procedure based on the Horton–Strahler ordering scheme of the watershed. © 1998 John Wiley & Sons, Ltd.  相似文献   
18.
The consequences of a cosmological term varying asS –2 in a spatially isotropic universe with scale factorS and conserved matter tensor are investigated. One finds a perpetually expanding universe with positive and gravitational constantG that increases with time. The hard equation of state 3P>U (U mass-energy density,P scalar pressure) applied to the early universe leads to the expansion lawSt (t cosmic time) which solves the horizon problem with no need of inflation. Also the flatness problem is resolved without inflation. The model does not affect the well known predictions on the cosmic light elements abundance which come from standard big bang cosmology.In the present, matter dominated universe one findsdG/dt=2H/U (H is the Hubble parameter) which is consistent with observations provided <10–57 cm–2. Asymptotically (S) the term equalsGU/2, in agreement with other studies.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号