首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   6篇
大气科学   3篇
地球物理   44篇
地质学   11篇
综合类   1篇
  2021年   2篇
  2020年   2篇
  2019年   6篇
  2018年   6篇
  2017年   3篇
  2016年   5篇
  2015年   7篇
  2013年   1篇
  2012年   6篇
  2011年   5篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   8篇
  1998年   1篇
  1993年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
11.
12.
ABSTRACT

The spatial/temporal proximity of Mt. Etna to the Hyblean Plateau and the Aeolian slab makes the discussion on the nature of its mantle source/s extremely controversial. In this study, a detailed geochemical overview of the entire Mt. Etna evolutionary sequence and a comparison with the magmatism of the Hyblean Plateau was proposed to: (i) simulate the composition of Mt. Etna tholeiitic to alkaline primitive magmas in equilibrium with a fertile mantle source; (ii) model the nature, composition and evolution of the mantle source from the tholeiitic stage (600 ka) to present magmatism. According to our simulations, two amphibole + phlogopite-bearing spinel lherzolite sources are able to explain the wide range of Etnean primary magmas. The enrichment in LILE, 87Sr/86Sr, Rb and H2O of the magmas emitted after 1971 (but also discontinuously generated in both historic and prehistoric times) are caused by different melting proportions of amphibole and phlogopite in a modally and compositionally homogeneous mantle domain, with melting degrees analogous to those required to produce magmas erupted prior to 1971. The behaviour of the hydrous phases during melting could be ascribed to a variable H2O/CO2 activity in the mantle source, in turn related to the heat/fluxes supply from the asthenospheric upwelling beneath Mt. Etna. All these considerations, strengthened by numerical models, are then merged to review the complex Pliocene/Lower Pleistocene to present day’s geodynamic evolution of eastern Sicily.  相似文献   
13.
Sediment delivery ratio can be used as a measure of sediment connectivity and it can be linked to the structural connectivity(morphological unit, slope length, slope steepness, travel time) of a basin and to the functional connectivity(rainfall-runoff processes at morphological unit scale). In this paper the sediment connectivity approach was applied at basin scale both using Sediment Delivery Distributed(SEDD) model, which takes into account the hillslope sediment transport, and sediment yield measurements carried out at SPA2 experimental basin(Sicily, Italy). The expression of the sediment delivery ratio SDRi of a morphological unit was modified for highlighting two components corresponding to the structural(SDR_(L,i)) and functional(SDR_(F,i)) sediment connectivity, respectively. For SPA2 basin the frequency distribution of the travel time of each morphological unit was used to estimate the coefficient βL of the structural component of the sediment delivery ratio of each morphological unit. Then, using the sediment yield measurements carried out at the outlet of the experimental SPA2 basin in the period April 2000-March 2015, the SEDD model was calibrated at event scale for estimating the coefficient βF of the functional component of the sediment delivery ratio. At event scale the developed analysis stated that the functional connectivity is dependent on the magnitude of erosion events. Intermediate and high events, which were characterized by the lowest values of the functional coefficient, determine a more high functional connectivity and are characterized by a more efficient sediment transport along the hillslopes. Finally, at annual scale, the model was calibrated for the period 2000-2015 and relationships for estimating the coefficient βF,a of the functional component of the sediment delivery ratio taking into account the intensity of erosion events occurring in each year were determined. At annual scale, the analysis demonstrated that the functional coefficient was always greater than the landscape coefficient and the sediment connectivity was always controlled by the low values of the functional component.  相似文献   
14.
Patuxent Landscape Model: 4. Model application   总被引:1,自引:0,他引:1  
Using the LHEM/SME the Patuxent Landscape Model (PLM) was built to simulate fundamental ecological processes in the watershed scale driven by temporal (nutrient loadings, climatic conditions) and spatial (land use patterns) forcings. The model addresses the effects of both the magnitude and spatial patterns of land use change and agricultural practices on hydrology, plant productivity, and nutrient cycling in the landscape.  相似文献   
15.
The first part of this investigation was aimed at testing the use of a three‐dimensional (3D) digital terrain model and a quasi‐tridimensional (2.5D) digital elevation model obtained by a large series of oblique images of eroded channels taken from consumer un‐calibrated and non‐metric cameras. For two closed earth channels having a different sinuosity, the ground measurement of some cross sections by a profilometer (P) was carried out and their real volume was also measured. The comparison among the three methods (3D, 2.5D, and P) pointed out that a limited underestimation of the total volume always occurs and that the 3D method is characterized by the minimum difference between measured and real volume. For this reason, 3D model can be used as benchmark. In the subsequent part of the investigation, the three ground measurement methods were applied for surveying of an ephemeral gully (EG) channel at the Sparacia area. The morphological and hydraulic variable values of the 24 surveyed cross sections determined by both 2.5D model and profilometer were compared. This comparison showed that the estimate error is generally less than ±10%. The EG measurements carried out by the three methods supported the applicability both of the empirical relationship between EG length and its eroded volume and the theoretical dimensionless relationship among the morphological variables describing the channelized erosion process. Finally, it was demonstrated that the effect of the distance interval on the EG volume measurement by 3D and 2.5D models is negligible for the investigated EG.  相似文献   
16.
17.
We collected thermal infrared video of two explosive eruptions at Stromboli in June 2008 and manually traced the trajectories of 95 particles launched during two eruptions. We found that 10–15?% of the analyzed trajectories deviated from predicted curves due to collisions, causing one particle to travel horizontally more than twice as far as expected. Furthermore, we observed an oscillatory cooling behavior for the airborne pyroclasts, with a median period of 0.46?s. Measured cooling was typically much faster than model-predicted cooling with discrepancies of up to 40?% between measured cooling and theoretical modeling. We interpret the measured cooling curves as resulting from the spinning and twisting and tearing of particles during travel: the periodic re-exposing of the hotter core of the pyroclasts to the atmosphere may cause the observed oscillations, and the spinning may accelerate cooling by enhancing convective heat transfer. Current volcanic trajectory and cooling models do not account for projectile collisions, spinning, or tearing and can thus severely underestimate the maximum landing distance and cooling rates of large pyroclasts.  相似文献   
18.
19.
The traditional direct method (i.e. metric ruler and rillmeter) of monitoring rill erosion at plot scale is time consuming and invasive because it modifies the surface of the rilled area. Measuring rill features using a drone‐based technology is considered a non‐invasive method allowing a fast field relief. In the experimental Sparacia area a survey by a quadricopter Microdrones md4‐200 was carried out, and this relief allowed the generation of a Digital Elevation Model (DEM), with a mesh size of 1 cm and a resolution elevation equal to 2 mm, for three plots (L, G and C) affected by rill erosion. At first for the experimental L plot, which is 44 m long, the rill features were surveyed by a ‘manual’ method which was carried out by drawing on the PC screen the rill paths obtained by a visual orthophoto interpretation. This manual method was not applicable for the plots in which rills of limited depth occurred and were not detectable. Then, for both L plot and the other experimental plots having a length ranging from 22 to 44 m, an ‘automatic’ extraction method of rills from DEM was applied. Using an appropriate calculation routine, a vector coverage of transects orthogonal to the main flow direction (i.e. the maximum slope steepness path) was generated. The intersection of each plot DEM with the transect coverage allowed to obtain both the cross sections and the main rill morphological features. For the L plot the comparison between the rill morphological features obtained by the two different methods (manual, automatic) was carried out. Finally, the length–volume relationship and a dimensionless relationship proposed in literature were tested for all studied experimental plots. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
20.
In order to develop efficient strategies for risk mitigation and emergency management, planners require the assessment of both the expected hazard (frequency and magnitude) and the vulnerability of exposed elements. This paper presents a GIS-based methodology to produce qualitative to semi-qualitative thematic risk assessments for tephra fallout around explosive volcanoes, designed to operate with datasets of variable precision and resolution depending on data availability. Due to the constant increase in population density around volcanoes and to the wide dispersal of tephra from volcanic plumes, a large range of threats, such as roof collapses, damage to crops, blockage of vital lifelines and health problems, concern even remote communities. To address these issues, we have assessed the vulnerability and the risk levels for five themes relevant to tephra fallout: (1) social, (2) economic, (3) environmental, (4) physical and (5) territorial. Risk and vulnerability indices for each theme are averaged to the fourth level of administrative unit (parroquia, parish). In a companion paper, Biass and Bonadonna (this volume) present a probabilistic hazard assessment for tephra fallout at Cotopaxi volcano (Ecuador) using the advection-diffusion model TEPHRA2, which is based on field investigations and a global eruption database (Global Volcanism Program, GVP). The scope of this paper is to present a new approach to risk assessment specifically designed for tephra fallout, based on a comprehensive hazard assessment of Cotopaxi volcano. Our results show that an eruption of moderate magnitude (i.e. VEI 4) would result in the possible collapse of ??9,000 houses in the two parishes located close to the volcano. Our study also reveals a high risk on agriculture, closely linked to the economic sector, and a possible accessibility problem in case of an eruption of any size, as tephra is likely to affect the only major road running from Quito to Latacunga (Panamerican Highway). As a result, this method fits into the ongoing effort to better characterize and evaluate volcanic risk, and more specifically the risk associated with tephra fallout. Although this methodology relies on some assumptions, it can serve as a rapid and efficient starting point for further investigations of the risk level around explosive volcanoes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号