首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   324篇
  免费   11篇
  国内免费   9篇
测绘学   3篇
大气科学   16篇
地球物理   106篇
地质学   100篇
海洋学   36篇
天文学   63篇
自然地理   20篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   7篇
  2019年   13篇
  2018年   7篇
  2017年   8篇
  2016年   8篇
  2015年   14篇
  2014年   13篇
  2013年   23篇
  2012年   16篇
  2011年   15篇
  2010年   18篇
  2009年   29篇
  2008年   13篇
  2007年   19篇
  2006年   22篇
  2005年   9篇
  2004年   14篇
  2003年   5篇
  2002年   6篇
  2001年   6篇
  2000年   7篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1985年   6篇
  1984年   1篇
  1983年   1篇
  1981年   5篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1973年   2篇
  1970年   1篇
排序方式: 共有344条查询结果,搜索用时 78 毫秒
261.
262.
263.
264.
This work describes the development of the Angolan earthquake catalog and seismicity distribution in the Southwestern African Plate, in Angola. This region is one of the least seismically active, even for stable continental regions (SCRs) in the world. The maximum known earthquake had a magnitude of 6.0 Ms, while events with magnitudes of 4.5 have return period of about 10 years. Events with magnitude 5 and above occur with return period of about 20 years. Five seismic zones can be confirmed in Angola, within and along craton edges and in the sedimentary basins including offshore. Overall, the exposed cratonic regions tend to have more earthquakes compared to other regions such as sedimentary basins. Earthquakes tend to occur in Archaic rocks, especially inside preexisting weakness zones and in tectonic-magmatic reactivation zones of Mesozoic and Meso-Cenozoic, associated with the installation of a wide variety of intrusive rocks, strongly marked by intense tectonism. This fact can be explained by the models of preexisting weakness zones and stress concentration near intersecting structures. The Angolan passive margin is also a new region where seismic activity occurs. Although clear differences are found between different areas along the passive margin, in the middle near Porto Amboim city, seismic activity is more frequent compared with northwestern and southwestern regions.  相似文献   
265.
The stratigraphy of tsunami deposits along the Japan Sea, southwest Hokkaido, northern Japan, reveals tsunami recurrences in this particular area. Sandy tsunami deposits are preserved in small valley plains, whereas gravelly deposits of possible tsunami origin are identified in surficial soils covering a Holocene marine terrace and a slope talus. At least five horizons of tsunami events can be defined in the Okushiri Island, the youngest of which immediately overlies the Ko‐d tephra layer (1640 AD) and was likely formed by the historical Oshima‐Ohshima tsunami in 1741 AD. The four older tsunami deposits, dated using accelerator mass spectrometry 14C, were formed at around the 12th century, 1.5–1.6, 2.4–2.6, and 2.8–3.1 ka, respectively. Tsunami sand beds of the 1741 AD and circa 12th century events are recognized in the Hiyama District of Hokkaido Island, but the older tsunami deposits are missing. The deposits of these two tsunamis are found together at the same sites and distributed in regions where wave heights of the 1993 tsunami (Hokkaido Nansei‐oki earthquake, Mw = 7.7) were less than 3 m. Thus, the 12th century tsunami waves were possibly generated near the south of Okushiri Island, whereas the 1993 tsunami was generated towards the north of the island. The estimated recurrence intervals of paleotsunamis, 200–1100 years with an average of 500 years, likely represents the recurrence interval of large earthquakes which would have occurred along several active faults offshore of southwest Hokkaido.  相似文献   
266.
Flow fields in Shizugawa Bay on the Sanriku ria coast, which faces the Pacific Ocean, were investigated using hydrographic observations for the purpose of understanding oceanographic conditions and the process of water exchanges in the bay after the 2011 earthquake off the Pacific coast of Tohoku. In spring to summer, density-driven surface outflow is part of estuarine circulation and is induced by a pressure gradient force under larger longitudinal gradients in density along with lower salinity water in the innermost part of the bay, regardless of wind forcing. In winter to summer, another density-driven current with a thermal structure is induced by a pressure gradient force under the smaller longitudinal density gradients in calm wind conditions. Particularly in winter, Tsugaru Warm Current water can be transported in the surface layer inside the bay. Wind-driven bay-scale circulation with downwind and upwind currents in the surface and deeper layers, respectively, is induced by strong longitudinal wind forcing under the smaller longitudinal density gradients, irrespective of season. Particularly in fall to spring, this circulation can cause the intrusions of oceanic water associated with Oyashio water and Tsugaru Warm Current water in the deeper layer. These results suggest that wind- and density-driven currents can produce the active exchange of water from inside and outside the bay throughout the year.  相似文献   
267.
The Atacama Large Millimeter/submillimeter Array (ALMA) radio telescope has commenced science observations of the Sun starting in late 2016. Since the Sun is much larger than the field of view of individual ALMA dishes, the ALMA interferometer is unable to measure the background level of solar emission when observing the solar disk. The absolute temperature scale is a critical measurement for much of ALMA solar science, including the understanding of energy transfer through the solar atmosphere, the properties of prominences, and the study of shock heating in the chromosphere. In order to provide an absolute temperature scale, ALMA solar observing will take advantage of the remarkable fast-scanning capabilities of the ALMA 12 m dishes to make single-dish maps of the full Sun. This article reports on the results of an extensive commissioning effort to optimize the mapping procedure, and it describes the nature of the resulting data. Amplitude calibration is discussed in detail: a path that uses the two loads in the ALMA calibration system as well as sky measurements is described and applied to commissioning data. Inspection of a large number of single-dish datasets shows significant variation in the resulting temperatures, and based on the temperature distributions, we derive quiet-Sun values at disk center of 7300 K at \(\lambda = 3~\mbox{mm}\) and 5900 K at \(\lambda = 1.3~\mbox{mm}\). These values have statistical uncertainties of about 100 K, but systematic uncertainties in the temperature scale that may be significantly larger. Example images are presented from two periods with very different levels of solar activity. At a resolution of about \(25''\), the 1.3 mm wavelength images show temperatures on the disk that vary over about a 2000 K range. Active regions and plages are among the hotter features, while a large sunspot umbra shows up as a depression, and filament channels are relatively cool. Prominences above the solar limb are a common feature of the single-dish images.  相似文献   
268.
269.
Vertical plant area density profiles of wheat (Triticum aestivum L.) canopy at different growth stages (tillering, stem elongation, flowering, and ripening stages) were estimated using high-resolution portable scanning lidar based on the voxel-based canopy profiling method. The canopy was scanned three-dimensionally by laser beams emitted from several measuring points surrounding the canopy. At the ripening stage, the central azimuth angle was inclined about 23° to the row direction to avoid obstruction of the beam into the lower canopy by the upper part. Plant area density profiles were estimated, with root mean square errors of 0.28–0.79 m2 m?3 at each growth stage and of 0.45 m2 m?3 across all growth stages. Plant area index was also estimated, with absolute errors of 4.7%–7.7% at each growth stage and of 6.1% across all growth stages. Based on lidar-derived plant area density, the area of each type of organ (stem, leaves, ears) per unit ground area was related to the actual dry weight of each organ type, and regression equations were obtained. The standard errors of the equations were 4.1 g m?2 for ears and 26.6 g m?2 for stems and leaves. Based on these equations, the estimated total dry weight was from 63.3 to 279.4 g m?2 for ears and from 35.8 to 375.3 g m?2 for stems and leaves across the growth stages. Based on the estimated dry weight at ripening and the ratio of carbon to dry weight in wheat plants, the carbon stocks were 76.3 g C m?2 for grain, 225.0 g C m?2 for aboveground residue, and 301.3 g C m?2 for all aboveground organs.  相似文献   
270.
An historical objective analysis of subsurface temperature and salinity was carried out on a monthly basis from 1945 to 2003 using the latest observational databases and a sea surface temperature analysis. In addition, steric sea level changes were mainly examined using outputs of the objective analyses. The objective analysis is a revised version of Ishii et al. and is available at 16 levels in the upper 700 m depth. Artificial errors in the previous analysis during the 1990s have been worked out in the present analysis. The steric sea level computed from the temperature analysis has been verified with tide gauge observations and TOPEX/Poseidon sea surface height data. A correction for crustal movement is applied for tide gauge data along the Japanese coast. The new analysis is suitable for the discussion of global warming. Validation against the tide gauge reveals that the amplitude of thermosteric sea level becomes larger and the agreement improves in comparison with the previous analysis. A substantial part of local sea level rise along the Japanese coast appears to be explained by the thermosteric effect. The thermal expansion averaged in all longitudes from 60°S to 60°N explains at most half of recent sea level rise detected by satellite observation during the last decade. Considerable uncertainties remain in steric sea level, particularly over the southern oceans. Temperature changes within MLD make no effective contribution to steric sea level changes along the Antarctic Circumpolar Current. According to statistics using only reliable profiles of the temperature and salinity analyses, salinity variations are intrinsically important to steric sea level changes in high latitudes and in the Atlantic Ocean. Although data sparseness is severe even in the latest decade, linear trends of global mean thermosteric and halosteric sea level for 1955 to 2003 are estimated to be 0.31 ± 0.07 mm/yr and 0.04 ± 0.01 mm/yr, respectively. These estimates are comparable to those of the former studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号