首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   324篇
  免费   11篇
  国内免费   9篇
测绘学   3篇
大气科学   16篇
地球物理   106篇
地质学   100篇
海洋学   36篇
天文学   63篇
自然地理   20篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   7篇
  2019年   13篇
  2018年   7篇
  2017年   8篇
  2016年   8篇
  2015年   14篇
  2014年   13篇
  2013年   23篇
  2012年   16篇
  2011年   15篇
  2010年   18篇
  2009年   29篇
  2008年   13篇
  2007年   19篇
  2006年   22篇
  2005年   9篇
  2004年   14篇
  2003年   5篇
  2002年   6篇
  2001年   6篇
  2000年   7篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1985年   6篇
  1984年   1篇
  1983年   1篇
  1981年   5篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1973年   2篇
  1970年   1篇
排序方式: 共有344条查询结果,搜索用时 15 毫秒
291.
292.
When and how red S0 galaxies were formed is a longstanding and noteworthy problem. Recent morphological and photometric studies of S0sin distant clusters of galaxies have revealed a smaller S0 population fraction and the existence of S0s with bluer colours, which suggests that some physical processes drive continuous creation of S0s with younger stellar populations in higher-redshift clusters. We propose here that the major mechanism for S0 creation is galaxy merging between two spirals of unequal masses. Our numerical simulations demonstrate that galaxy merging exhausts a large amount of the interstellar medium of two gas-rich spirals owing to the moderately enhanced star formation, and subsequently transforms the two into a single gas-poor S0 galaxy with structure and kinematics strikingly similar to those observed. This secondary S0 formation via unequal-mass merging thus provides an evolutionary link between a larger number of blue spirals observed in intermediate-redshift clusters and the red S0s prevalent in present-day ones. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
293.
We investigate the cross-talk between the two key components of tidal-torque theory, the inertia ( I ) and shear ( T ) tensors, using a cosmological N -body simulation with thousands of well-resolved haloes. We find that the principal axes of I and T are strongly aligned , even though I characterizes the protohalo locally while T is determined by the large-scale structure. Thus, the resultant galactic spin, which plays a key role in galaxy formation, is only a residual due to ∼10 per cent deviations from the perfect alignment of T and I . The   T – I   correlation induces a weak tendency for the protohalo spin to be perpendicular to the major axes of T and I , but this correlation is erased by non-linear effects at late times, making the observed spins poor indicators of the initial shear field.
However, the   T – I   correlation implies that the shear tensor can be used for identifying the positions and boundaries of protohaloes in cosmological initial conditions – a missing piece in galaxy formation theory. The typical configuration is of a prolate protohalo lying perpendicular to a large-scale high-density ridge, with the surrounding voids inducing compression along the major and intermediate inertia axes of the protohalo. This leads to a transient sub-halo filament along the large-scale ridge, whose subclumps then flow along the filament and merge into the final halo.
The centres of protohaloes tend to lie in ∼1 σ overdensity regions, but their association with linear density maxima smoothed on galactic scales is vague: only ∼40 per cent of the protohaloes contain peaks. Several other characteristics distinguish protohaloes from density peaks, e.g. they tend to compress along two principal axes while many peaks compress along three axes.  相似文献   
294.
We estimate energy spectra and fluxes at the Earth’s surface of the cosmic and Galactic neutrino backgrounds produced by thermonuclear reactions in stars. The extra-galactic component is obtained by combining the most recent estimates of the cosmic star formation history and the stellar initial mass function with accurate theoretical predictions of the neutrino yields all over the thermonuclear lifetime of stars of different masses. Models of the structure and evolution of the Milky Way are used to derive maps of the expected flux generated by Galactic sources as a function of sky direction. The predicted neutrino backgrounds depend only slightly on model parameters. In the relevant 50 keV–10 MeV window, the total flux of cosmic neutrinos ranges between 20 and 65 cm−2 s−1. Neutrinos reaching the Earth today have been typically emitted at redshift z2. Their energy spectrum peaks at E0.1–0.3 MeV. The energy and entropy densities of the cosmic background are negligible with respect to the thermal contribution of relic neutrinos originated in the early universe. In every sky direction, the cosmic background is outnumbered by the Galactic one, whose integrated flux amounts to 300–1000 cm−2 s−1. The emission from stars in the Galactic disk contributes more than 95% of the signal.  相似文献   
295.
To investigate the realistic ground behavior during tunneling, a new device has been developed. With the new device, model tests of tunnel excavation considering an existing tunnel and an existing building were carried out. Non-linear finite element analyses corresponding to the model tests were also conducted using FEMtij-2D software where an elastoplastic subloading t ij model was used to describe the mechanical behavior of soil. Earth pressure distribution around the tunnels and ground movements during tunnel excavation depend on the distance and position between the twin tunnels. There is a significant effect of tunneling on the existing foundation of building even in the case where the tunnel is constructed in deep underground. The numerical analyses capture well the results of the model tests.  相似文献   
296.
Observations of the Sun at millimeter and submillimeter wavelengths offer a unique probe into the structure, dynamics, and heating of the chromosphere; the structure of sunspots; the formation and eruption of prominences and filaments; and energetic phenomena such as jets and flares. High-resolution observations of the Sun at millimeter and submillimeter wavelengths are challenging due to the intense, extended, low-contrast, and dynamic nature of emission from the quiet Sun, and the extremely intense and variable nature of emissions associated with energetic phenomena. The Atacama Large Millimeter/submillimeter Array (ALMA) was designed with solar observations in mind. The requirements for solar observations are significantly different from observations of sidereal sources and special measures are necessary to successfully carry out this type of observations. We describe the commissioning efforts that enable the use of two frequency bands, the 3-mm band (Band 3) and the 1.25-mm band (Band 6), for continuum interferometric-imaging observations of the Sun with ALMA. Examples of high-resolution synthesized images obtained using the newly commissioned modes during the solar-commissioning campaign held in December 2015 are presented. Although only 30 of the eventual 66 ALMA antennas were used for the campaign, the solar images synthesized from the ALMA commissioning data reveal new features of the solar atmosphere that demonstrate the potential power of ALMA solar observations. The ongoing expansion of ALMA and solar-commissioning efforts will continue to enable new and unique solar observing capabilities.  相似文献   
297.
U–Pb geochronology and trace element chemistry of zircons in a microscale analysis were applied to the Ishizuchi caldera in the Outer Zone of Southwest Japan in order to estimate the timescale of the magma process, in particular, the magma differentiation. This caldera is composed mainly of ring fault complexes, major pyroclastic flow deposits, and felsic intrusion including central plutons. Using SHRIMP‐IIe, our new U–Pb zircon ages obtained from the major pyroclastic flow deposits (Tengudake pyroclastic flow deposits), granitic rocks from central plutons (Soushikei granodiorite and Teppoishigawa quartz monzonite), and rhyolite from the outer ring dike (Tenchuseki rhyolite) and the inner ring dike (Bansyodani rhyolite) are 14.80 ±0.11 Ma, 14.56 ±0.10 Ma, 14.53 ±0.12 Ma, 14.55 ±0.11 Ma and 14.21 ±0.19 Ma, respectively. Based on the U–Pb ages, the Hf contents and the REE patterns of the zircons, three stages are recognized in the evolutionary history of the magma chamber beneath the Ishizuchi caldera: (i) climactic Tengudake pyroclastic flow eruption; (ii) Tenchuseki rhyolite intrusion into the outer ring dike and central pluton intrusion; and (iii) Bansyodani rhyolite intrusion in the inner ring dike. These results indicate a magma evolution history of the Ishizuchi caldera system which took at least ca 600 kyr from the climatic caldera‐forming eruption to the post‐caldera intrusions. Our new geochronological data suggest that the Ishizuchi caldera formed as part of the voluminous and episodic magmatism that occurred in the wide zone along the Miocene forearc basin of Southwest Japan during the inception of the young Philippine Sea Plate subduction.  相似文献   
298.
The inner part of Isahaya Bay was converted to a freshwater reservoir following the closure of the land claim dike in 1997. Turbid water drains into Isahaya Bay when water levels increase. We investigated whether particulate organic matter (POM) from the reservoir in Isahaya Bay has caused bottom organic enrichment in the northern part of Ariake Bay. Using potential end-members from before to after the rainy seasons, during which a frequent discharge from the reservoir was expected, stable isotope analyses were performed on sediments collected from Isahaya Bay and northern Ariake Bay. Each end-member was isotopically differentiated by δ13C and δ15N (riverine POM: ?28.5 to ?27.2‰ and 3.3–4.6‰; reservoir POM: ?25.7 to ?25.3‰ and 7.4–8.4‰; marine POM: ?21.8 to ?19.7‰ and 6.7–7.6‰; microphytobenthos estimated from consumers: ?16.1 to ?15.9‰ and 5.2–6.1‰, respectively). Sediment isotopic signatures fell within the mixing space defined by the signatures of the end-members. Marine POM contributed greatly to bottom sediments in both seasons in Isahaya Bay and Ariake Bay, ranging from ca. 60–70 and 40–60%, respectively. Reservoir POM contributed around 10% to bottom sediments. This percentage slightly increased in the sediment of Isahaya Bay after the rainy season, but decreased in the sediment of Ariake Bay. Thus, most of the POM discharged from the reservoir would not reach the northern part of Ariake Bay and would not be a major contributor to organic enrichment. This study is the first to quantitatively describe the contribution of drained reservoir POM outside Isahaya Bay.  相似文献   
299.
Phytoplankton biomass and primary production were examined in their environmental context, for a semi-enclosed bay (Tokyo Bay, Japan) using data from monthly samples collected over a three-year period. Heavy precipitation and high surface temperatures in the late spring and summer gave rise to a highly-stratified water-column and stimulated a series of phytoplankton blooms, whereas during the winter, a weakly-stratified and deeply-mixed water-column led to a rapid decline in phytoplankton biomass under light-limited growth conditions. By incorporating pigment, photophysiological and optical data into a primary production model we show that daily, water-column primary production ranges from ∼160 mg C m−2 d−1 to 7600 mg C m−2 d−1. High water turbidity and deep vertical mixing, both separately and in concert, limit the light available for algal growth over much of the year. Annual primary production varied from 370 to 580 g C m−2 y−1. The relative influences of nutrient limitation and light limitation are assessed. A model is developed that describes this in an explicit manner using photophysiological parameters.  相似文献   
300.
The weathering of granodiorite porphyry is examined in the extremely cold and dry environment of the inland part of Antarctica. Weathering features include granular disintegration, rock varnish, and sheeting. Sheeting has gradually proceeded since the exposing of the nunatak, but the other types of weathering have not actively advanced in recent times.
Granular disintegration primarily comprises the release of individual crystals. The mechanism of this release is that cracks are created along crystal boundaries and cleavages in phenocrysts mainly due to differential thermal expansion. Plagioclase and hypersthene are released more readily than quartz. Disintegration of plagioclase has produced many prism-shaped holes, 0.5 to 2.0 mm in length, while fine-grained quartz crystals, 0.05 to 0.1 mm in diameter, are incidentally released without cracking.
The reddish brown (10R4/4) rock varnishes result from oxidation and consist of limonite, which fills cracks and penetrates into crystals. Ferrous iron in hypersthene, biotite, ilmenite and magnetite is transformed into limonite by oxidation. Manganese is not found in the varnishes. Sulfur, which is important for oxidation and which may have originated from adhered snow, is concentrated on the surface of the rock.
Sheeting has precipitated rock falls, and has gradually formed a gray mosaic on the varnished wall. The sheeting was caused by gravitational body force, which is internal stress of the rock body due to the mass of the overburden.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号