首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   2篇
测绘学   2篇
大气科学   7篇
地球物理   1篇
地质学   11篇
天文学   1篇
自然地理   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2012年   1篇
  2011年   2篇
  2009年   3篇
  2007年   1篇
  2005年   1篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
排序方式: 共有23条查询结果,搜索用时 31 毫秒
11.
A criterion, allowing one to assess conditions likely togenerate gap flows and/or hydraulicjumps in stratified flows over a mountain ridge or a mountain pass,is derived. It is based on the one-dimensional reduced-gravity shallow-watertheory generalized to a three-dimensional orography with moderate streamwisevariations by introducing a variable effective flow cross-section. In this way,the hydraulic jump and gap flow are accommodated within the same model. Theresulting steady hyperbolic problem is shown to require the boundaryconditions to be expressed in terms of Riemann invariants. The latter yield the flow betweentwo given sites in a unique way. In particular, it is possible to relateunambiguously the existence of a hydraulic jump/gap flow and its energydiscontinuity to the boundary conditions. A simple method of flow interpolationand energy discontinuity calculation between two sites is presented.  相似文献   
12.
The diurnal cycle of the atmospheric boundary layer (ABL) hasbeen documented on 8 August 1998 in the framework of the Étude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF) experiment that took place in the Paris area. The ABL structure was documented by means of a ground-based lidar, surface meteorological stations and soundings. The interaction between the residual layer and the convective boundary layer is investigated using the collected data as well as mesoscale modelling. As opposed to the generally accepted concept, we find evidence of entrainment at the top ofthe residual layer. High temporal simulations of the 8 August 1998 casemade with the mesoscale atmospheric model Meso-NH also show evidenceof mixing at the top of the residual layer (RL). This mixing is believed to be related to the presence of convective (gravity) waves in the RL.  相似文献   
13.
A cold-air outbreak over the Mediterranean, associated with a Tramontane event, has been simulated with the atmospheric non-hydrostatic model Meso-NH using a horizontal resolution of 2 km. Results are compared with in situ aircraft, airborne lidar and satellite measurements. On average, the mean and turbulent parameters simulated in the surface layer and mixed layer compared well with in situ measurements. The model was able to reproduce accurately the Foehn effect in the wake of Cape Creus, as well as the occurence of rolls in the coastal region in connection with cloud streets observed with AVHRR. Over the sea, the threshold value of turbulent kinetic energy defining the height of the atmospheric boundary-layer top in the model (defined as 25% of the maximum turbulent kinetic energy in the profile) enables the simulated atmospheric boundary-layer height to match the one retrieved from lidar measurements. Nevertheless, the model did not handle very well the abrupt gradients of all meteorological parameters observed at the top of the atmospheric boundary-layer. Reasons for this are investigated.  相似文献   
14.
15.
Unsaturated expansive soils subjected to wetting and drying cycles result in huge differential settlements of structures built on these materials. The existed models for these materials present large number of parameters that lead to time-consuming procedure to characterise their mechanical behaviour during wetting–drying cycles. In this context, Zarka shakedown theory previously applied to the mechanical loading of granular materials has been used for expansive soils subjected to suction cycles. The parameters of this shakedown-based model were calibrated for two different expansive soils. The comparisons between the experimental results and the calculations for the different tests, demonstrate the capacity of Zarka shakedown theory to simulate the mechanical behaviour of unsaturated expansive soils.  相似文献   
16.

Emergency responses in humanitarian contexts require rapid set-up of water supply. Boreholes are often drilled where the needs are highest and not where hydrogeological conditions are most favourable. The Rapid Groundwater Potential Mapping (RGWPM) methodology was therefore developed as a practical tool to support borehole siting when time is critical, allowing strategic planning of geophysical campaigns. RGWPM is based on the combined analysis of satellite images, digital elevation models and geological maps, obtained through spatial overlay of the two main hydrogeological variables controlling groundwater potential: water availability (WA) and reservoir capacity (RC). The WA associates hydrogeomorphological features to groundwater dynamic processes, while the RC reflects estimates of the hydraulic conductivity. RGWPM maps are produced through an overlay of WA and RC with the overall groundwater potential (GWP) characterized as ‘very low’, ‘low’, ‘medium’, and ‘high’, with each zone associated to a specific water supply option. The first RGWPM map was elaborated during a drilling campaign in Northern Uganda. The average yield for the eight boreholes sited ‘with’ RGWPM was 35 m3/h versus 3 m3/h for the 92 preexisting boreholes that were sited ‘without’ RGWPM. Statistical comparison of the classified yields of all hundred boreholes with the RGWPM predicted-yield ranges revealed a good correlation for the ‘low’ GWP unit, highlighting areas where well siting for motorised systems should be avoided. A rather poor correlation of 33% was found for the ‘medium’ GWP unit, believed to be artificially induced by the numerous hand pumps (low yields) located in potentially higher yielding areas.

  相似文献   
17.
Tree ring chronologies provide long-term records of growth in natural environmental conditions and may be used to evaluate impacts of climatic change and CO2 increase on forest productivity. This study focuses on 21 Pinus halepensis forest stands in calcareous Provence (in the south-east of France). A chronology of net primary productivity (NPP) both for the 20th century and for each stand was estimated using tree ring data (width and density). The response of each stand to climate in terms of NPP was statistically modelled using response functions. Anomalies between estimated NPP and NPP reconstructed by response functions were calculated to evaluate the fertilising effect of CO2 increase on tree growth. The changes in anomalies during the 20th century were attributed to the effect of CO2 increase. A multiplying factor (β) linking CO2 concentration and stand productivity was then calculated, on the basis of the trend observed during the 20th century. In this study, the value of the β factor obtained under natural conditions (β=0.50) is consistent with those from controlled CO2 enrichment experiments. Both response functions and the β factor were used to predict NPP changes for a 2×CO2 scenario. The 2×CO2 climate was obtained using predictions from Météo France's ARPEGE atmospheric general circulation model (AGCM) downscaled to Marseilles meteorological station. NPP increased significantly for nine stands solely when the climatic effect was taken into account. The main factors responsible for this enhancement were increased winter and early spring temperatures. When the fertilising effect of the CO2 increase was added, NPP was significantly enhanced for 14 stands (i.e. NPP enhancement ranged from 8% to 55%). Although the effects of global change were slightly detectable during the 20th century, their acceleration is likely to lead to great changes in the future productivity of P. halepensis forests.  相似文献   
18.
Trade-wind cumuli constitute the cloud type with the highest frequency of occurrence on Earth, and it has been shown that their sensitivity to changing environmental conditions will critically influence the magnitude and pace of future global warming. Research over the last decade has pointed out the importance of the interplay between clouds, convection and circulation in controling this sensitivity. Numerical models represent this interplay in diverse ways, which translates into different responses of trade-cumuli to climate perturbations. Climate models predict that the area covered by shallow cumuli at cloud base is very sensitive to changes in environmental conditions, while process models suggest the opposite. To understand and resolve this contradiction, we propose to organize a field campaign aimed at quantifying the physical properties of trade-cumuli (e.g., cloud fraction and water content) as a function of the large-scale environment. Beyond a better understanding of clouds-circulation coupling processes, the campaign will provide a reference data set that may be used as a benchmark for advancing the modelling and the satellite remote sensing of clouds and circulation. It will also be an opportunity for complementary investigations such as evaluating model convective parameterizations or studying the role of ocean mesoscale eddies in air–sea interactions and convective organization.  相似文献   
19.
In this study, we propose an automatic detection algorithm for cloud/shadow on remote sensing optical images. It is based on physical properties of clouds and shadows, namely for a cloud and its associated shadow: both are connex objects of similar shape and area, and they are related by their relative locations. We show that these properties can be formalized using Markov Random Field (MRF) framework at two levels: one MRF over the pixel graph for connexity modelling, and one MRF over the graph of objects (clouds and shadows) for their relationship modelling. Then, we show that, practically, having performed an image pre-processing step (channel inter-calibration) specific to cloud detection, the local optimization of the proposed MRF models leads to a rather simple image processing algorithm involving only six parameters. Using a 39 image database, performance is shown and discussed, in particular in comparison with the Marked Point Process approach.  相似文献   
20.
In the absence of initial cracks, the material behavior is limited by its strength, usually defined in homogeneous conditions (of stress and strain). Beyond this limit, in quasi‐brittle case, cracks may propagate and the material behavior tends to be well described by fracture mechanics. Discrete element approaches show consistent results dealing with this transition during rupture. However, the calibration of the parameters of the numerical models (i.e., stiffness, strength, and toughness) may be quite complex and sometimes only approximative. Based on a brittle rupture criterion, we analyze the biaxial response of uncracked samples. Thus, tensile and compressive strengths are analytically identified and become direct parameters of our discrete model. Furthermore, a physically reliable crack initiation (and subsequent propagation) is shown to be induced during rupture and verified by the simulation of three‐point bending and diametral compression tests. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号