首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
  国内免费   6篇
地球物理   12篇
地质学   29篇
海洋学   1篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2014年   3篇
  2013年   6篇
  2012年   8篇
  2011年   3篇
  2008年   1篇
  2006年   1篇
  2003年   1篇
  2002年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   2篇
  1973年   1篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
21.
22.
23.
1 INTRODUCTION Movement of navigation traffic in restricted waterway can generate various hydrodynamic phenomena including return flow (RF), surge wave, drawdown and sediment re-suspension which are absent in open water conditions (Schofield and Martin, 1…  相似文献   
24.
An extinct hydrothermal barite-silica chimney from the Franklin Seamount of the Woodlark Basin, in the southwestern Pacific Ocean, was investigated for mineral distribution and geochemical composition. Six layers on either side of the orifice of a chimney show significant disparity in color, mineral assemblage and major element composition. Electron microscope(SEM) images reveal that the peripheral wall of the chimney is composed of colloform silica, suggesting that incipient precipitation of silica-saturated hydrothermal fluid initiated the development of the chimney wall. Intermediate layers, between the exterior wall and the inner fluid-orifice, dominate with barite and sulfides. Low Sr-to-Ba ratios(SrO/BaO = 0.015–0.017) indicate restricted fluid-seawater mixing, which causes relatively high-temperature formation of the intermediate layers. Whereas the innermost layer bordering the chimney orifice is characterized by more silica and a higher Sr-to-Ba ratio(SrO/BaO = 0.023), could have formed due to a paragenetic shift from a high-temperature active phase to a cooler waning stage of formation. A paragenetic shift is also probably responsible for the change in mineral formation mechanism that resulted in the textural variation of barite and colloform silica developed during different growth phases of this barite-silica chimney.  相似文献   
25.
Medium range weather forecasts are being generated in real time using Global Data Assimilation Forecasting System (GDAFS) at NCMRWF since 1994. The system has been continuously upgraded in terms of data usage, assimilation and forecasting system. Recently this system was upgraded to a horizontal resolution of T574 (about 22 km) with 64 levels in vertical. The assimilation scheme of this upgraded system is based on the latest Grid Statistical Interpolation (GSI) scheme and it has the provision to use most of available meteorological and oceanographic satellite datasets besides conventional meteorological observations. The new system has an improved procedure for relocating tropical cyclone to its observed position with the correct intensity. All these modifications have resulted in improvement of skill of medium range forecasts by about 1 day.  相似文献   
26.
27.
28.
29.
The Central Indian Ocean Basin (CIOB) basalts are plagioclase-rich, while olivine and pyroxene are very few. The analyses of 41 samples reveal high FeOT (~10–18 wt%) and TiO2 (~1.4–2.7 wt%) indicating a ferrobasaltic composition. The basalts have high incompatible elements (Zr 63–228 ppm; Nb ~1–5 ppm; Ba ~15–78 ppm; La ~3–16 ppm), a similar U/Pb (0.02–0.4) ratio as the normal mid-oceanic basalt (0.16±0.07) but the Ba/Nb (12.5–53) ratio is much larger than that of the normal mid-oceanic ridge basalt (~5.7) and Primitive Mantle (9.56). Interestingly almost all of the basalts have a significant negative Eu anomaly (Eu/Eu*=0.78–1.00) that may have been a result of the removal of feldspar and pyroxene during crystal fractionation. These compositional variations suggest that the basalts were derived through fractional crystallization together with low partial melting of a shallow seated magma.  相似文献   
30.
The delayed fission neutron counting method has been used for the analysis of thirty-three international geochemical reference samples for their uranium contents in the range of 0.2 to 1500 ppm. These include three from the Canada Centre for Mineral and Energy Technology, three from Atomic Energy Commission, USA, New Brunswick Laboratory, two from Bhabha Atomic Research Centre, India, fourteen from Centre de Recherches Pétrographiques et Géochimiques and eleven from US Geological Survey. The experimental set up has a detection limit of 0.08 μg and a determination limit of 0.15 μg U. At the lower limit the precision of determination is about 20 percent while at concentrations higher than 1 ppm it is better than 10 percent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号