首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
地质学   11篇
天文学   1篇
  2013年   1篇
  2011年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2001年   2篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1991年   1篇
排序方式: 共有12条查询结果,搜索用时 62 毫秒
11.
Two coexisting series of strongly alkaline (basanite-tephritephonolite)and weakly alkaline (alkali basalt-trachyandesite-trachyte-rhyolite)lavas occur in the Cantal volcano (French Massif Central). Theparental magmas appear to be derived by variable degrees ofpartial melting of a common asthenospheric mantle source. Derivativetrachyandesites and feldspathoidbearing tephrites show depletionsand enrichments in trace elements which indicate that they havebeen generated by broadly similar fractionation processes, relatedto the removal of a mineral extract, from the parental alkalibasalts and basanites respectively, dominated by olivine, clinopyroxene,amphibole, apatite and titaniferous magnetite±plagioclase.In the most extreme differentiates (trachytes, rhyolites andphonolites) fractionation of zircon, sphene and alkali feldsparexerts a major control on the trace element characteristicsof the magmas. Sr-Nd-Pb isotopic data for the two magma series suggest theimportance of combined assimilation-fractional crystallizationprocesses (AFC) within the lower crust in their evolution. Modellingdemonstrates that the AFC process amplifies the original compositionaldifferences between the parent magmas. After 55% crystallizationin the strongly alkaline series and 65% in the weakly alkalineseries crustal contamination ceases, although fractional crystallizationcontinues beyond this point to produce the most evolved differentiates(phonolites and rhyolites). This may reflect progressive sealingof the lowercrustal magma reservoirs. The tendency of the magmasto follow over- or under-saturated evolutionary trends, producingrhyolitic and phonolitic residua respectively, appears to beestablished at the early stages of magmatic differentiation,reflecting inherent differences in the compositions of the parentalmagmas. KEY WORDS: alkaline magmas; Massif Central; Cantal; AFC; magmatic differentiation  相似文献   
12.
Late Tertiary post-orogenic alkaline basalts erupted in theextensional Pannonian Basin following Eocene-Miocene subductionand its related calc-alkaline volcanism. The alkaline volcaniccentres, dated between 11•7 and 1•4 Ma, are concentratedin several regions of the Pannonian Basin. Some are near thewestern (Graz Basin, Burgenland), northern (Ngrd), and eastern(Transylvania) margins of the basin, but the majority are concentratednear the Central Range (Balaton area and Little Hungarian Plain).Fresh samples from 31 volcanic centres of the extension-relatedlavas range from slightly hy-normative transitional basaltsthrough alkali basalts and basanites to olivine nephelinites.No highly evolved compositions have been encountered. The presenceof peridotite xenoliths, mantle xenocrysts, and high-pressuremegacrysts, even in the slightly more evolved rocks, indicatesthat differentiation took place within the upper mantle. Rare earth elements (REE) and 87Sr/86Sr, 143Nd/144Nd, 18O, D,and Pb isotopic ratios have been determined on a subset of samples,and also on clinopyroxene and amphibole megacrysts. Sr and Ndisotope ratios span the range of Neogene alkali basalts fromwestern and central Europe, and suggest that the magmas of thePannonian Basin were dominantly derived from asthenosphericpartial melting, but Pb isotopes indicate that in most casesthey were modified by melt components from the enriched lithosphericmantle through which they have ascended. 18O values indicatethat the magmas have not been significantly contaminated withcrustal material during ascent, and isotopic and trace-elementratios therefore reflect mantle source characteristics. Incompatible-elementpatterns show that the basic lavas erupted in the Balaton areaand Little Hungarian Plain are relatively homogeneous and areenriched in K, Rb, Ba, Sr, and Pb with respect to average oceanisland basalt, and resemble alkali basalts of Gough Island.In addition, 207Pb/204Pb is enriched relative to 2O6Pb/204Pb.In these respects, the lavas of the Balaton area and the LittleHungarian Plain differ from those of other regions of Neogenealkaline magmatism of Europe. This may be due to the introductionof marine sediments into the mantle during the earlier periodof subduction and metasomatism of the lithosphere by slab-derivedfluids rich in K, Rb, Ba, Pb, and Sr. Lavas erupted in the peripheralareas have incompatible-element patterns and isotopic characteristicsdifferent from those of the central areas of the basin, andmore closely resemble Neogene alkaline lavas from areas of westernEurope where recent subduction has not occurred.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号