首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   5篇
地球物理   10篇
地质学   17篇
海洋学   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
  2001年   1篇
  1999年   2篇
  1982年   1篇
排序方式: 共有28条查询结果,搜索用时 31 毫秒
21.
Abstract: The Onsen acid‐sulphate type of mineralization is located in the Desmos caldera, Manus back‐arc basin. Hydrothermal precipitates, fresh and altered basaltic andesite collected from the Desmos caldera were studied to determine mineralization and mobility of elements under seawater dominated condition of hydrothermal alteration. The mineralization is characterized by three stages of advanced argillic alteration. Alteration stage I is characterized by coarse subhedral pyrophyllite with disseminated anhedral pyrite and enargite which were formed in the temperature range of 260–340°C. Alteration stage II which overprinted alteration stage I was formed in the temperature range of 270–310°C and is characterized by euhedral pyrite, quartz, natroalunite, cristobalite and mixed layer minerals of smectite and mica with 14–15 Å XRD peak. Alteration stage III is characterized by amorphous silica, native sulphur, covellite, marcasite and euhedral pyrite, which has overprinted alteration stages I and II. Relative to the fresh basaltic andesite samples, the rims and cores of the partly altered basaltic andesite samples have very low major, minor and rare earth elements content except for SiO2 which is much higher (58–78 wt%) than SiO2 content of the fresh basaltic andesite (55 wt%). REE patterns of the partly altered basaltic andesite specimens are variably depleted in LREE and have pronounced negative Eu anomalies. Normalization of major, minor and REE content of the partly altered basaltic andesites to the fresh basaltic andesite indicates that all the elements except for SiO2 in the partly altered basaltic andesite are strongly lost (e.g. Al2O3 = ‐8.3 to ‐10.9 g/100cm3, Ba = ‐2.2 to ‐5.6 mg/100cm3, La = ‐130 to ‐200 μg/100cm3) during the alteration process. Abnormal depletion of MgO, total Fe as Fe2O3, LREE especially Eu and enrichment of SiO2 in the altered basaltic andesites from the Desmos caldera seafloor is caused by interaction of hot acidic hydrothermal fluid, which originates from a mixing of magmatic fluid and seawater.  相似文献   
22.
The Na Son deposit is a small‐scale Pb–ZnPb–Zn–Ag deposit in northeast Vietnam and consists of biotite–chlorite schist, reddish altered rocks, quartz veins and syenite. The biotite–chlorite schist is intruded by syenite. Reddish altered rocks occur as an alteration halo between the biotite–allanite‐bearing quartz veins and the biotite–chlorite schist. Allanite occurs in the biotite–allanite‐bearing quartz veins and in the proximal reddish altered rocks. Rare earth element (REE) fluorocarbonate minerals occur along fractures or at rim of allanite crystals. The later horizontal aggregates of sulfide veins and veinlets cut the earlier reddish altered rocks. The earlier Pb–Zn veins consist of a large amount of galena and lesser amounts of sphalerite, pyrite and molybdenite. The later Cu veins cutting the Pb–Zn veins include chalcopyrite and lesser amounts of tetrahedrite and pyrite. The occurrences of two‐phase H2O–CO2 fluid inclusions in quartz from biotite–allanite‐bearing quartz veins and REE‐bearing fluorocarbonate minerals in allanite suggest the presence of CO2 and F in the hydrothermal fluid. The oxygen isotopic ratios of the reddish altered rocks, biotite–chlorite schist, and syenite range from +13.9 to +14.9 ‰, +11.5 to +13.3 ‰, and +10.1 to +11.6 ‰, respectively. Assuming an isotopic equilibrium between quartz (+14.6 to +15.8 ‰) and biotite (+8.6 ‰) in the biotite–allanite‐bearing quartz vein, formation temperature was estimated to be 400°C. At 400°C, δ18O values of the hydrothermal fluid in equilibrium with quartz and biotite range from +10.5 to +11.7 ‰. These δ18O values are consistent with fluid that is derived from metamorphism. Assuming an isotopic equilibrium between galena (+1.5 to +1.7 ‰) and chalcopyrite (+3.4 ‰), the formation temperature was estimated to be approximately 300°C. The formation temperature of the Na Son deposit decreased with the progress of mineralization. Based on the geological data, occurrence of REE‐bearing minerals and oxygen isotopic ratios, the REE mineralization is thought to result from interaction between biotite–chlorite schist and REE‐, CO2‐ and F‐bearing metamorphic fluid at 400°C under a rock‐dominant condition.  相似文献   
23.
This paper presents a new, improved, post‐earthquake damage assessment method that takes into account residual deformations attained by the damaged structure during the earthquake. Local and global residual deformations and visual damage indicators are considered to estimate the maximum deformations experienced by the structure. As a particular development, the method allows measured displacements and rotations to be considered jointly. Uncertainties associated with both the excitation and the damaged structure are explicitly accounted for. The resulting maximum displacement estimates allow a more accurate evaluation of the extent of structural damage when judging the usability/reparability of the investigated structure. A trial application of the method to a real structure tested on a shaking table is presented. The results confirm the capability of the method to estimate the maximum displacement and the residual stiffness of the damaged structure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
24.
Koryu矿山位于北海道南西部,为一浅成低温热液型Au-Ag石英脉型矿床.矿床产于中新世黑色泥岩中的东西向剪切带内.矿床含有8个主要脉体,总体呈东西走向,在水平、垂直方向上均发生结构、构造的变化.1号脉和3号脉中冰长石K-Ar年龄为0.8~1.2 Ma,表明矿化时代为更新世.根据矿脉体的穿插关系和脉内矿物共生关系得出矿区有2期矿化,早期矿化可分3个阶段(即E-Ⅰ,E-Ⅱ,E-Ⅲ),晚期矿化可分成7个阶段(即L-Ⅰ,L-Ⅱ,L-Ⅲ,L-Ⅳ,L-Ⅴ,L-Ⅵ,L-Ⅶ).宽矿脉体由多阶段矿化组成,Au-Ag矿化主要与L-Ⅲ阶段矿化密切相关.早期矿化形成的特征矿物为钙菱镁矿、钙锰辉石及少量矿石矿物;晚期矿化形成大量矿石矿物.含AuAg的矿物主要为银金矿、螺状硫银矿-辉硒银矿、硫锑铜银矿-硫砷铜银矿、浓红银矿-淡红银矿、辉铜银矿、马硫铜银矿、碲银矿和黝铜矿.而脉石矿物为绿泥石、蒙脱石、石英.区内许多成矿阶段均含富气相流体包裹体,这表明沸腾作用在整个过程中间歇发生.早期矿化温度(263~283℃)稍高于晚期矿化温度(246~260℃).成矿溶液盐度为0.5%~6.0% NaCl当量,尽管CO2含量在晚期矿化阶段达0.4%(质量分数).这些特征表明成矿流体最大压力为3.1~6.8 M Pa,相当于古潜水面下430~850 m深度.石英形态学结合流体包裹体研究证实流体沸腾作用反复发生,导致SiO2过饱和,形成结构各异的二氧化硅矿物.在脉体形成过程中,SiO2重结晶形成石英.稳定同位素资料、矿物共生组合特征、石英结构特征和流体包裹体特征综合研究得出Koryu金-银矿床成矿模式如下:矿床矿化分为明显的两期,即早期和晚期,分别对应类型1和类型2两种热液流体.早期流体具相对高的W18O值(-5.3‰~-4.7‰),温度不低于260℃;晚期流体W18O值相对偏低(-9.3‰~-6.0‰),温度250℃以上.类型1流体发生深部循环,淋滤Ca和M n元素,在早期矿化过程中形成钙菱镁矿、钙锰辉石.与浅成水混合的类型2流体沿新通道上升,富含Au、Ag元素.在晚期矿化过程中,流体上升至沸腾带( < 850 m),金、银在250℃沉淀成矿.  相似文献   
25.
26.
For 3‐D shallow‐water seismic surveys offshore Abu Dhabi, imaging the target reflectors requires high resolution. Characterization and monitoring of hydrocarbon reservoirs by seismic amplitude‐versus‐offset techniques demands high pre‐stack amplitude fidelity. In this region, however, it still was not clear how the survey parameters should be chosen to satisfy the required data quality. To answer this question, we applied the focal‐beam method to survey evaluation and design. This subsurface‐ and target‐oriented approach enables quantitative analysis of attributes such as the best achievable resolution and pre‐stack amplitude fidelity at a fixed grid point in the subsurface for a given acquisition geometry at the surface. This method offers an efficient way to optimize the acquisition geometry for maximum resolution and minimum amplitude‐versus‐offset imprint. We applied it to several acquisition geometries in order to understand the effects of survey parameters such as the four spatial sampling intervals and apertures of the template geometry. The results led to a good understanding of the relationship between the survey parameters and the resulting data quality and identification of the survey parameters for reflection imaging and amplitude‐versus‐offset applications.  相似文献   
27.
Surface waves in seismic data are often dominant in a land or shallow‐water environment. Separating them from primaries is of great importance either for removing them as noise for reservoir imaging and characterization or for extracting them as signal for near‐surface characterization. However, their complex properties make the surface‐wave separation significantly challenging in seismic processing. To address the challenges, we propose a method of three‐dimensional surface‐wave estimation and separation using an iterative closed‐loop approach. The closed loop contains a relatively simple forward model of surface waves and adaptive subtraction of the forward‐modelled surface waves from the observed surface waves, making it possible to evaluate the residual between them. In this approach, the surface‐wave model is parameterized by the frequency‐dependent slowness and source properties for each surface‐wave mode. The optimal parameters are estimated in such a way that the residual is minimized and, consequently, this approach solves the inverse problem. Through real data examples, we demonstrate that the proposed method successfully estimates the surface waves and separates them out from the seismic data. In addition, it is demonstrated that our method can also be applied to undersampled, irregularly sampled, and blended seismic data.  相似文献   
28.
The Sr, Ba, and rare earth elements (REEs) concentrations and Sr isotopic composition of anhydrite and gypsum have been determined for samples from the Matsumine, Shakanai, and Hanaoka Kuroko-type massive sulfide–sulfate deposits of northern Japan to evaluate the mechanisms of sekko (anhydrite and gypsum) ore formation. The Sr isotopic compositions of the samples fall in the range of 0.7077–0.7087, intermediate between that for middle Miocene (13–15 Ma) seawater (0.7088) (Peterman et al., Geochim Cosmochim Acta, 34:105–120, 1970) and that for country rocks (e.g., 0.7030–0.7050) (Shuto, Assn Geol Collab Japan Monograph 18:91–105, 1974). The Kuroko anhydrite samples exhibit two types of chondrite-normalized REE patterns: one with a decrease from light REEs (LREEs) to heavy REEs (HREEs) (type I), and another with a LREE-depleted pattern (type II). Based on the Sr content and isotopic ratio (assuming an Sr/Ca (mM/M) of 8.7 for seawater), anhydrite is considered to have formed by mixing of preheated seawater with a hydrothermal solution of Sr/Ca (mM/M) = ca. 0.59–1.36 under the condition in which the partition coefficient (Kd) ranges between ca. 0.5 and 0.7. This results in the formation of anhydrite with higher Sr content with an Sr isotopic value close to that of seawater under seawater-dominant conditions. Larger crystals of type II anhydrite are partly replaced by smaller ones, indicating that anhydrite dissolution and recrystallization occurred after or during the formation of sekko ore. Gypsum, which partially replaces anhydrite in the Kuroko deposits, also exhibits two distinct chondrite-normalized REE patterns. Because LREEs are likely to be more readily mobilized during dissolution and recrystallization, it is hypothesized that LREEs are leached from type I anhydrite, resulting in the formation of type II anhydrite with LREE-depleted profiles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号