首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   2篇
  国内免费   2篇
测绘学   1篇
大气科学   5篇
地球物理   3篇
地质学   15篇
天文学   4篇
自然地理   2篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
排序方式: 共有30条查询结果,搜索用时 296 毫秒
21.
On behalf of the Serbian Government, the Ministries of Mining and Energy and of Science and Environment Protection are signatories to a master plan for the promotion of the mining industry in Serbia. This is being achieved with the assistance of the Japanese Government through the Japanese International Cooperation Agency (JICA), who engaged a mining company from Tokyo–Mindeco (Mitsui Mineral Development Engineering Co. Ltd) to partner the Serbian ministries, the Mining and Geology Faculty in Belgrade, the Geological Institute of Serbia (Belgrade), the Copper Institute (Bor), and the Military Geographical Institute (Belgrade), as well as private companies dealing in geological exploration, etc. Apart from other things, the master plan contains a newly‐formed GIS application, which registers exploration, exploitation fields and other relevant data. This GIS web application was one the first steps towards the realization of ‘e‐Government’ in the field of geological exploration and mining activities within the Republic of Serbia.  相似文献   
22.
Successful seeding of clouds in weather modification experiments essentially depends on the seeding time and dynamics, amount of seeding material and location of the initial seeding area. In the present study, we focus on the influence of the initial seeding zone location on the transport of seeding agent material into the target cloud. In addition, the inadvertent transport of seeding material is analysed. During weather modification activities, a lot of seeding material can be transferred far from the seeding zone in a downwind direction. The primary motivation for this research was to prove this statement. We use a three-dimensional, mesoscale cloud-resolving model to achieve our goal. We performed sensitivity tests with respect to the distance between the mass centres of the initial seeding area and the cloud. Different seeding scenarios are analysed. Our principal findings are as follows: (1) For distances between the mass centres of the initial seeding area and the cloud below 2.5 km, all seeding agent material would be activated after a short time. For distances above 10 km, most of the seeding agent would remain inactivated, because horizontal transport of the seeding agent becomes more important than transport induced by the main updraft. For these scenarios, the seeding agent is injected in the cold peripheral part of the cloud. (2) Sensitivity tests show that the inactivated seeding agent would remain close to the seeding area if the seeding is performed below cloud base. This effect occurs even for large distances between the seeding area and the target cloud (>20 km) due to low-level convergence. Thus, this seeding method suppresses the inert seeding material from being transferred far from the seeding zone. (3) The complete seeding material stays inactivated if the seeding is performed between the ?8 and ?12°C isotherms in front of the increased reflectivity zone. As a consequence, it would be transferred far from its initial area. The cloud would not be able to capture the seeding agent even during its greatest lateral extent.  相似文献   
23.
Mantle xenoliths from Paleogene basanites of East Serbia were studied using EMP and LA-ICP-MS techniques in order to better understand mantle characteristics in this region. Five different mantle lithologies have been distinguished: a dunite/harzburgite/lherzolite (D/HZ/L) group, clinopyroxene-rich lherzolites (Cpx-L), clinopyroxene megacrysts (Cpx-M), spinel-rich olivine websterites (OWB1) and spinel-poor olivine websterites (OWB2). D/HZ/L xenoliths are the most common and represent normal mantle composed of typical anhydrous spinel peridotites with well equilibrated, unzoned silicates characterized by high Mg# s. Negative correlations between Mg# and TiO2, Al2O3 and CaO wt% in clinopyroxenes (cpx) and orthopyroxenes (opx) and the Cr–Al trend in spinel (sp) suggest depletion via extraction of basaltic melts. The modal composition of D/HZ/L xenoliths and unusual low-Al opx suggest that the lithospheric mantle underneath East Serbia is more depleted than normal European lithosphere. D/HZ/L xenoliths contain numerous pockets and veins filled by Cr-rich cpx, Ti-rich spinel, altered glass, apatite and rare ilmenite and phlogopite. Petrographic observations, supported by major element contents in sp and cpx, and modelling using trace element contents in cpx, indicate that the pockets and veins formed from infiltration of alkaline melts and reaction with peridotite wall-rock causing opx and spinel replacement. The same alkaline melt-related metasomatism gave rise to the Cpx-L and OWB1 mantle xenoliths and Cpx-M xenocrysts. Trace element contents of cpx in these xenoliths show a distinctively concave downwards REE pattern with a HFSE depletion, very similar to cpx megacrysts from the Pannonian Basin and to vein cpx from Eifel. In contrast, the OWB2 xenoliths show evidence of precipitation from subduction-related mafic to ultramafic melts, as inferred from their opx-rich lithology and unusual Cr-rich spinels. They are probably related to subduction magmatism during the Late Cretaceous.Milivoje Jovanovi: deceased in April 2004  相似文献   
24.
A suite of highly depleted peridotite xenoliths in East Serbian Palaeogene basanites represents the lithospheric mantle beneath the Balkan Peninsula. The xenoliths are harzburgites, clinopyroxene-poor lherzolites and rare dunites. They contain mostly <5 vol.% of modal clinopyroxene and are characterized by high Mg# in silicates (>91), high Cr# in spinel (mostly 0.5–0.7), and by distinctively low Al2O3 contents in orthopyroxene (mostly 1–2 wt.%). They have experienced some mantle metasomatism which has slightly obscured their original composition. Nevertheless, the general characteristics of the xenoliths imply a composition which is significantly more depleted than most non-cratonic sub-continental mantle xenolith suites, as well as orogenic peridotites and abyssal peridotites. Geological and compositional evidence suggests that the xenoliths do not represent Archean mantle. The existence of Proterozoic mantle cannot be entirely excluded, although it is in disagreement with geological evidence. On the other hand, the studied xenoliths are compositionally very similar to peridotites of modern oceanic sub-arc settings. The existence of such a depleted lithospheric mantle segment is also inferred from the presence of rare orthopyroxene-rich xenoliths in the same suite. These are interpreted to have originated as lithospheric precipitates of high-Mg, SiO2-saturated magmas that require a highly depleted mantle source. Such source is typically required by boninitic-like magmas of intraoceanic suprasubduction settings. A proposed geodynamic model to explain these observations involves accretion or underplating of the lower parts of the Tethyan oceanic lithosphere during the Upper Jurassic closure of the eastern branch of the Vardar ocean.  相似文献   
25.
Convective precipitation is the main cause of extreme rainfall events in small areas. Its primary characteristics are both large spatial and temporal variability. For this reason, the monitoring of accumulated precipitation fields (liquid and solid components) at the surface is difficult to carry out through the use of rain gauge networks or remote-sensing observations. Alternatively, numerical models seem to be the most powerful tool in simulating convective precipitation for various analyses and predictions. Due to a lack of comparisons between modelled and observed precipitation characteristics over a long period of time, we focus our research on comparisons between observations and three model samples of accumulated convective precipitation over a particular study area. We use a numerical cloud model with two model schemes involving the unified Khrgian–Mazin size distribution of cloud drops and a model scheme involving a monodisperse cloud droplet spectrum and the Marshall–Palmer size distribution for raindrops, respectively. For comparison, we have selected a study area with a sounding site. Our analysis shows that the model version with the Khrgian–Mazin size distribution exhibits a better agreement with the observed mean, median and range of extreme values of accumulated convective precipitation. Model simulations with the Khrgian–Mazin size distribution most closely match observations, with a correlation coefficient of 0.91. Use of the Marshall–Palmer size distribution, on the other hand, systemically underestimates the observed precipitation and has the lowest correlation coefficient among the methods, 0.83. Such an investigation is crucial to improve predictions of accumulated convective precipitation for various climatological and hydrological analyses and predictions.  相似文献   
26.
In this paper, we discuss known discrepancies between theoretically derived and empirically measured relations between the radio surface brightness Σ and the diameter D of supernova remnants (SNRs): these relations are commonly known as the ΣD relations. We argue that these discrepancies may be at least partially explained by taking into account thermal emission at radio frequencies from SNRs at particular evolutionary stages and located in particular environments. The major contributions of this paper may be summarized as follows: (i) we consider thermal emission at radio frequencies from SNRs in the following scenarios: a relatively young SNR evolving in a dense molecular cloud environment (n  100–1000 cm−3) and an extremely evolved SNR expanding in a dense warm medium (n  1–10 cm−3). Both of these SNRs are assumed to be in the adiabatic phase of evolution. We develop models of the radio emission from both of these types of SNRs and each of these models demonstrate that through the thermal bremsstrahlung process significant thermal emission at radio frequencies is expected from both types of SNR. Based on a literature search, we claim that thermal absorption or emission at radio frequencies has been detected for one evolved Galactic SNR and four young Galactic SNRs with similar properties to our modelled evolved and young SNRs. (ii) We construct artificial radio spectra for both of these two types of SNRs: in particular, we discuss our simulated spectrum for the evolved Galactic SNR OA 184. By including thermal emission in our simulated spectra, we obtain different slopes in ΣD relations: these new slopes are in closer agreement to empirically obtained relations than the theoretically derived relations which do not take thermal emission into account. (iii) Lastly, we present an additional modification to the theoretical ΣD relation for SNRs in the adiabatic expansion phase. This modification is based on the convolution of the synchrotron emissivity with the emissivity derived in this paper for thermal bremsstrahlung emission from an ionized gas cloud (that is, a theoretical construct of an SNR).  相似文献   
27.
We study the infrared (IR) emission from flared discs with and without additional optically thin haloes. Flux calculations of a flared disc in vacuum can be considered a special case of the more general family of models in which the disc is imbedded in an optically thin halo. In the absence of such a halo, flux measurements can never rule out its existence because the disc flaring surface defines a mathematically equivalent halo that produces the exact same flux at all IR wavelengths. When a flared disc with height H at its outer radius R is imbedded in a halo whose optical depth at visual wavelengths is  τhalo  , the system IR flux is dominated by the halo whenever  τhalo > (1/4) H / R   . Even when its optical depth is much smaller, the halo can still have a significant effect on the disc temperature profile. Imaging is the only way to rule out the existence of a potential halo, and we identify a decisive test that extracts a signature unique to flared discs from imaging observations.  相似文献   
28.
Abstract

A kinematic model is applied to graupel growth. The vertical velocity and ther‐modynamic field data are taken from the forced 1‐D time‐dependent model of Cb cloud developed by Curie and Jane (1988). The graupel embryo pocket was released at the height of the — 10°C isotherm. The influence of the forced lifting on further graupel growth and its trajectory is analysed by sensitivity experiments based on the amplitude of the forced lifting, and initial graupel radius, density and cloud droplet concentration for the forced lifting initiation time derived from the model and the forced lifting duration time that agreed with observations. In particular, the sensitivity analysis was carried out for the forced lifting initiation and duration times.

It is shown that for large values of the forced lifting amplitudes, the residence time of the graupel within cloud and the final graupel radius may be significantly larger compared with those in the non‐forced case. The residence time in a cloud can also be significantly larger for the smallest amplitude, whereas the final radius is rather insensitive owing to oscillations around the melting level. For some cases the forced lifting causes recycling inside the updraft, contrary to the results of previous non‐forced numerical models. The recycling mechanism is sensitive to the forced lifting duration time and the time interval between the graupel pocket injection in cloud and the initiation of the forced lifting. Initially the observed recycling mechanism is a consequence of the periodic forced lifting mechanism, but then combines with recycling of the Pflaum type (1980).  相似文献   
29.
30.
Vertical vorticity characteristics within individual cumulonimbus (Cb) cloud moving over complex terrain are investigated by cloud-resolving mesoscale model. Orography impact on vorticity is recognized by comparison of its characteristics within the storm moving over flat terrain under the same other conditions. In present study, two cases are considered: complex terrain case (referred to as CT case) and flat terrain case (referred to as FT case). A sensitivity study shows that orographical effects on vorticity are important. Main findings are:
– For CT case vortices produced by convective tilting of horizontal vortices are closer to each other and more stretched in form owing to valley configuration. The vortex with positive vorticity is mainly stronger in magnitude compared to its negative counterpart.
– Magnitudes of vorticities for CT case are greater at lowest levels and initial time intervals compared to those for FT case.
– For CT case the vortices with opposite signs of vorticity produced by precipitation appear later than in FT case. Their duration is shorter and they are weaker in intensity compared to those formed within a cloud over flat terrain.
– Complex terrain intensifies the splitting of simulated cloud.
Keywords: Mesoscale model; Vertical vorticity; Orography effects; Vortices  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号