首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314篇
  免费   16篇
  国内免费   5篇
测绘学   8篇
大气科学   13篇
地球物理   80篇
地质学   126篇
海洋学   18篇
天文学   85篇
自然地理   5篇
  2023年   2篇
  2022年   10篇
  2021年   2篇
  2020年   13篇
  2019年   15篇
  2018年   13篇
  2017年   13篇
  2016年   19篇
  2015年   12篇
  2014年   9篇
  2013年   14篇
  2012年   21篇
  2011年   25篇
  2010年   15篇
  2009年   22篇
  2008年   18篇
  2007年   24篇
  2006年   16篇
  2005年   13篇
  2004年   14篇
  2003年   12篇
  2002年   9篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1987年   2篇
  1984年   1篇
  1983年   1篇
排序方式: 共有335条查询结果,搜索用时 31 毫秒
11.
The aquatic macrofauna of the Guadalquivir estuary were sampled (1 mm mesh persiana net) at 5 sampling sites located along the entire (except the tidal freshwater region) estuarine gradient of salinity (outer 50 km). A total of 134 fish and macroinvertebrate species was collected but only 62 were considered common or regularly present in the estuary. Univariate measures of the community structure showed statistically significant differences among sampling sites: species richness, abundance, and biomass decreased in the upstream direction, being positively correlated with the salinity. Temporal differences of these three variables were also statistically significant. While a clear seasonal pattern (minimum densities in winter and maximum in spring-summer) was observed for abundance and biomass, no such pattern existed for the number of species. Mysids was the most dominant group throughout the estuary (96% to 99% of abundance; 49% to 85% of biomass), although fish biomass was also important at the outer estuary (36% to 38%). Multivariate analyses indicated highly significant spatial variation in the macrofaunal communities observed along the salinity gradient. These analyses suggest that the underlying structure was a continuum with more or less overlapping distributions of the species dependent on their ability to tolerate different physicochemical conditions. There were also significant temporal (intermonthly + interannual) variation of the estuarine community; the relative multivariate dispersion indicated that monthly variation was more considerable (relative multivariate dispersion >1) at the outer part of the estuary during the wet year (last 20 km) and was higher in the inner stations during the dry year (32 to 50 km from the river mouth). Since a clear negative exponential relationship was observed between the freshwater input (from a dam located 110 km upstream) and water salinity at all sampling stations, it is concluded that the human freshwater management is probably affecting the studied estuarine communities. While the higher seasonal (long-term) stability of the salinity gradient, due to the human control of the freshwater input, may facilitate the recruitment of marine species juveniles during the meteorologically unstable early-spring, the additional (short-term) salinity fluctuations during the warm period may negatively affect species that complete their lifecycle within the estuary.  相似文献   
12.
Current land-use classifications used to assess urbanization effects on stream water quality date back to the 1980s when limited information was available to characterize watershed attributes that mediate non-point source pollution. With high resolution remote sensing and widely used GIS tools, there has been a vast increase in the availability and precision of geospatial data of built environments. In this study, we leverage geospatial data to expand the characterization of developed landscapes and create a typology that allows us to better understand the impact of complex developed landscapes across the rural to urban gradient. We assess the ability of the developed landscape typology to reveal patterns in stream water chemistry previously undetected by traditional land-cover based classification. We examine the distribution of land-cover, infrastructure, topography and geology across 3876 National Hydrography Dataset Plus catchments in the Piedmont region of North Carolina, USA. From this dataset, we generate metrics to evaluate the abundance, density and position of landscape features relative to streams, catchment outlets and topographic wetness metrics. While impervious surfaces are a key distinguishing feature of the urban landscape, sanitary infrastructure, population density and geology are better predictors of baseflow stream water chemistry. Unsupervised clustering was used to generate a distinct developed landscape typology based on the expanded, high-resolution landscape feature information. Using stream chemistry data from 37 developed headwater catchments, we compared the baseflow water chemistry grouped by traditional land-cover based classes of urbanization (rural, low, medium and high density) to our composition and structure-based classification (a nine-class typology). The typology based on 22 metrics of developed landscape composition and structure explained over 50% of the variation in NO3-N, TDN, DOC, Cl, and Br concentration, while the ISC-based classification only significantly explained 23% of the variation in TDN. These results demonstrate the importance of infrastructure, population and geology in defining developed landscapes and improving discrete classes for water management.  相似文献   
13.
The behavior of granular materials is known to depend on its loose or dense nature, which in turns depends both on density and confining pressure. Many models developed in the past require the use of different sets of constitutive parameters for the same material under different confining pressures. The purpose of this paper is to extend a basic generalized plasticity model for sands proposed by Pastor, Zienkiewicz and Chan by modifying the main ingredients of the model flow—rule, loading–unloading discriminating direction and plastic modulus—to include a dependency on the state parameter. The proposed model is tested against the available experimental data on three different sands, using for each of them a single set of material parameters, finding a reasonably good agreement between experiments and predictions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
14.
The aim of this paper is to extend the generalized plasticity state parameter‐based model presented in part 1 to reproduce the hydro‐mechanical behavior of unsaturated soils. The proposed model is based on two pairs of stress–strain variables and a suitable hardening law taking into account the bonding—debonding effect of suction and degree of saturation. A generalized state parameter for unsaturated state is proposed to reproduce soil behavior using a single set of material parameters. Generalized plasticity gives a suitable framework to reproduce not only monotonic stress path but also cyclic behavior. The hydraulic hysteresis during a drying—wetting cycle and the void ratio effect on the hydraulic behavior is introduced. Comparison between model simulations and a series of experimental data available, both cohesive and granular, are given to illustrate the accuracy of the enhanced generalized plasticity equation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
15.
Three-dimensional urban cartography is needed for city changes’ assessment. The variety of studies using 3D calculations of urban elements grows each year. Building and vegetation volumes are necessary to assess and understand spatio-temporal urban changeable environments. However, there are technical questions as to which method can improve 3D urban cartographic accuracy. The innovative part of this current study is the creation of a six-band hybrid obtained from LIDAR and WorldView2 synergy. Two different enhancement algorithms demonstrated the most important spectral features for the urban development and vegetation classes. Results indicated an improvement in accuracy by up to 21.3%, according to the Kappa coefficient. Both infra-red band and intensity band were the most significant, according to the principal components analysis. The synergy delimited classes and polygons, as well as the direct display of information regarding heights of elements and improving the extraction of roads, buildings and vegetation classes.  相似文献   
16.
Since Holocene time, above-mean precipitations recorded during the El Niño warm ENSO phase have been linked to the occurrence of severe debris flows in the arid Central Andes. The 2015–2016 El Niño, for its unusual strength, began driving huge and dangerous landslides in the Central Andes (32°) in the recent South Hemisphere summer. The resulting damages negatively impacted the regional economy. Despite this, causes of these dangerous events were ambiguously reported. For this reason, a multidisciplinary study was carried out in the Mendoza River valley. Firstly, a geomorphological analysis of affected basins was conducted, estimating morphometric parameters of recorded events such as velocity, stream flow, and volume. Atmospheric conditions during such events were analyzed, considering precipitations, snow cover, temperature range, and the elevation of the zero isotherm. Based on our findings, the role of El Niño on the slope instability in the Central Andes is more complex in the climate change scenario. Even though some events were effectively triggered by intense summer rainstorm following expectations, the most dangerous events were caused by the progressive uplifting of the zero isotherm in smaller basins where headwaters are occupied by debris rock glaciers. Our research findings give light to the dynamic coupled system ENSO–climate change–landslides (ECCL) at least in this particular case study of the Mendoza River valley. Landslide activity in this Andean region is driven by wetter conditions linked to the ENSO warm phase, but also to progressive warming since the twentieth century in the region. This fact emphasizes the future impact of the natural hazards on Andean mountain communities.  相似文献   
17.
Achieving long-term climate mitigation goals in Japan faces several challenges, starting with the uncertain nuclear power policy after the 2011 earthquake, the uncertain availability and progress of energy technologies, as well as energy security concerns in light of a high dependency on fuel imports. The combined weight of these challenges needs to be clarified in terms of the energy system and macroeconomic impacts. We applied a general equilibrium energy economic model to assess these impacts on an 80% emission reduction target by 2050 considering several alternative scenarios for nuclear power deployment, technology availability, end use energy efficiency, and the price of fossil fuels. We found that achieving the mitigation target was feasible for all scenarios, with considerable reductions in total energy consumption (39%–50%), higher shares of low-carbon sources (43%–72% compared to 15%), and larger shares of electricity in the final energy supply (51%–58% compared to 42%). The economic impacts of limiting nuclear power by 2050 (3.5% GDP loss) were small compared to the lack of carbon capture and storage (CCS) (6.4% GDP loss). Mitigation scenarios led to an improvement in energy security indicators (trade dependency and diversity of primary energy sources) even in the absence of nuclear power. Moreover, preliminary analysis indicates that expanding the range of renewable energy resources can lower the macroeconomic impacts of the long term target considerably, and thus further in depth analysis is needed on this aspect.

Key policy insights

  • For Japan, an emissions reduction target of 80% by 2050 is feasible without nuclear power or CCS.

  • The macroeconomic impact of such a 2050 target was largest without CCS, and smallest without nuclear power.

  • Energy security indicators improved in mitigation scenarios compared to the baseline.

  相似文献   
18.
The rich Quaternary fossil record from the Cantabrian region (NW Iberia) is virtually restricted to the Late Pleistocene, with Middle Pleistocene findings very rare. This work presents the study of two Middle Pleistocene palaeontological sites in the Cantabrian region: Llantrales quarry and Mestas de Con mine, both discovered and first described in the 1950s but never studied in detail thereafter. The material was here re‐analysed and re‐evaluated. Taxonomic attributions have been changed in most cases and, consequently, chronological assignments of the fossils have also been changed. This first detailed study of the assemblage from Llantrales quarry revealed the occurrence of the large‐sized deer Praemegaceros solilhacus, which has never been reported previously in North Iberia. Cervus cf. elaphus and Stephanorhinus cf. hundsheimensis were also identified. The age of these fossils was originally regarded as Pontian (late Miocene), but new palaeontological results indicate a much younger age, most likely from around 0.8 to 0.5 Ma. A taxonomic re‐evaluation of the fossils from Mestas de Con provided different results with respect to the 1950s works. The faunal association is composed of a large‐sized deer (probably corresponding to Praemegaceros), Cervus elaphus, Capreolus cf. capreolus, Bison sp. (small sized), Equus sp. (large sized), Stephanorhinus hemitoechus, Ursus sp. and Homotherim latidens. This faunal association was evaluated within a western European context and proves to be highly analogous to other contemporary assemblages there. The chronology was initially regarded as late Villafranchian (in a broader sense). New results, documenting the co‐occurrence of Stephanorhinus hemitoechus and Homotherium latidens, indicate a more precise and younger age, most likely between 0.6 and 0.4 Ma. These two fossil assemblages provide new and relevant information on the Middle Pleistocene faunas from a geographical region where this information, compared with other western European areas, is rare and poorly known.  相似文献   
19.
Arenal Volcano has effused basaltic andesite lava flows nearly continuously since September, 1968. The two different kinds of material in flows, lava and lava debris, have different rheologic properties and dynamic behavior. Flow morphology depends on the relationship between the amount and distribution of the lava and the debris, and to a lesser extent the ground morphology.Two main units characterize the flows: the channel zone and the frontal zone. The channel zone consists of two different units, the levées and the channel proper. A velocity profile in the channel shows a maximum value at the plug where the rate of shear is zero, and a velocity gradient increasing outward until, at the levées, the velocity becomes zero. Cooling produces a marked temperature gradient in the flow, leading to the formation of debris by brittle fracture when a critical value of shear rate to viscosity is reached. When the lava supply ceases, much of this debris and part of the lava is left behind after the flow nucleus drains out, forming a collapsed channel.Processes at the frontal zone include levée formation, debris formation, the change in shape of the front, and the choice of the flow path. These processes are controlled primarily by the rheological properties of the lava.Frontal zone dynamics can be understood by fixing the flow front as the point of reference. The lava flows through the channel into the front where it flows out into the levées, thereby increasing the length of the channel and permitting the front to advance. The front shows a relationship of critical height to the yield strength (τ0) surface tension, and slope; its continued movement is activated by the pressure of the advancing lava in the channel behind. For an ideal flow (isothermal, homogeneous, and isotropic) the ratio of the section of channel proper to the section of levées is calculated and the distance the front will have moved at any time tx can be determined once the amount of lava available to the front is known. Assuming that the velocity function of the front {G(t)} during the collapsing stage is proportional to the entrance pressure of the lava at the channel-front boundary, an exponential decrease of velocity through time is predicted, which shows good agreement with actual frontal velocity measurements taken on two flows. Local variations in slope have a secondary effect on frontal velocities.Under conditions of constant volume the frontal zone can be considered as a machine that consumes energy brought in by the lava to perform work (front advancement). While the front will use its potential energy to run the process, the velocity at which it occurs is controlled by the activation energy that enters the system as the kinetic energy of the lava flowing into the front. A relation for the energy contribution due to frontal acceleration is also derived. Finally the entrance pressure, that permits the front to deform, is calculated. Its small value confirms that the lava behaves very much like a Bingham plastic.  相似文献   
20.
The concentration of arsenic measured in groundwater from three aquifers in the study area located in the Eastern Tucuman province, Argentina, mostly depends on the lithology, but the spatial and temporal variations of concentrations seem to be also controlled by pH changes, climatic factors, and human perturbations. The highest concentrations of As (more than 1,000 μg L−1) were found in the shallow aquifer, made of As-rich loess, while the lowest concentrations were measured in the deep confined aquifer, consisting of alternating layers of alluvial sands/gravels and clays. Intermediate values were measured in the semiconfined aquifer made of the fluvial sediments deposited in the Salí River valley, that alternate in the upper part of the sedimentary sequence with layers of loess. Because most of As in the loess is considered to be adsorbed onto Fe-oxyhydroxide coatings, the increase of pH in the flow direction (west-east) leads to increasing arsenic concentrations towards the eastern border of the study area. The decomposition of organic wastes poured into the Salí River or associated with local and diffuse sources of contamination in the eastern part of the study area depletes dissolved oxygen, which leads to the reductive dissolution of Fe and Mn oxyhydroxides, and to the subsequent release of the adsorbed and co-precipitated As. This process mainly affects shallow groundwater and the upper part of the semiconfined aquifer. Geochemical and hydrological data also suggest that rising water table levels at the end of the wet season may also lead to reductive dissolution of As-rich Fe oxyhydroxides in the shallow aquifer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号