首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   1篇
地球物理   9篇
地质学   34篇
海洋学   9篇
天文学   23篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   7篇
  2017年   9篇
  2016年   5篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   5篇
  2009年   1篇
  2008年   7篇
  2007年   2篇
  2006年   4篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1988年   1篇
  1985年   2篇
  1984年   1篇
  1982年   3篇
  1980年   1篇
  1979年   1篇
  1973年   1篇
排序方式: 共有75条查询结果,搜索用时 15 毫秒
71.
Ferromanganese micro- and macronodules in eupelagic clays at Site 35 of the South Basin were examined in order to check the REE distribution during the ferromanganese ore formation in nonproductive zones of the Pacific Ocean. We studied host sediments and their labile fraction, ferromanganese micronodules (fractions 50–100, 100–250, 250–500, and >500 m) from eupelagic clays (horizons 37–40, 105–110, 165–175, and 189–190 cm), and buried ferromanganese micronodules (horizons 64–68, 158–159, and 165–166 cm). Based on phase analysis data, the anomalous REE enrichment of eupelagic clays from Site 35 is related to the accumulation of rare earth elements in iron hydroxophosphates. The Ce concentration, generally linked to manganese oxyhydroxides, is governed by the oxidation of Mn and Ce in oceanic surficial waters. Micronodules (Mn/Fe = 0.7–1.6) inherit compositional features of the labile fraction of sediments. The Ce, Co, and Th concentrations depend on the micronodule dimension. The enrichment of micronodules in hydrogenic or hydrothermal substance is governed by their dimension and the dominant source of suspended oxyhydroxide material. The study of buried ferromanganese micronodules revealed general regularities in the compositional evolution of oxyhydroxide matrices of ferromanganese micro- and macronodules. The compositional variation of micro- and macronodules, relative to the labile fraction of sediments, in the Pacific nonproductive zone dramatically differs from the pattern in bioproductive zones, where micronodule compositions in larger fractions are similar to those in associated macronodules and labile fractions of the host sediment as a result of the more intense suboxidative diagenesis.  相似文献   
72.
Processes of authigenic manganese ore formation in sediments of the northern equatorial Pacific are considered on the basis of study of the surface layer (<2 mm) of ferromanganese nodule and four micronodule size fractions from the associated surface sediment (0–7 cm). Inhomogeneity of the nodule composition is shown. The Mn/Fe ratio is maximal in samples taken from the lateral sectors of nodule at the water-sediment interface. Compositional differences of nodules are related to the preferential accumulation of microelements in iron oxyhydroxides (P, Sr, Pb, U, Bi, Th, Y, and REE), manganese hydroxides (Co, Ni, Cu, Zn, Cd, Mo, Tl, W), and lithogenous component trapped during nodule growth (Ga, Rb, Ba, and Cs). The Ce accumulation in the REE composition is maximal in the upper and lower parts of the nodule characterized by the minimal Mn/Fe values. The compositional comparison of manganese micronodules and surface layers of the nodule demonstrated that the micronodule material was subjected to a more intense reworking during the diagenesis of sediments. The micronodules are characterized by higher Mn/Fe and P/Fe ratios but lower Ni/Cu and Co/Ni ratios. The micronodules and nodules do not differ in terms of contents of Ce and Th that are least mobile elements during the diagenesis of elements. Differences in the chemical composition of micronodules and nodules are related not only to the additional input of Mn in the process of diagenesis, but also to the transformation of iron oxyhydroxides after the removal of Mn from the close association with Fe formed in the suspended matter at the stage of sedimentation.  相似文献   
73.
The concentrations of Ru, Pd, Ir, Pt, and Au were determined in a ferromanganese nodule reference sample NOD-A-1 by inductively coupled plasma mass-spectrometry. Sample preparation procedures include acid digestion and anion exchange preconcentration. Standard addition method was used to eliminate losses of the analyte during the chromatographic separation. The results are in agreement with previously published data. The low level of intermediate precision for Au between different subsamples of the same sample probably originates from the heterogeneous distribution of Au in ferromanganese nodules. The accumulation of PGE in ferromanganese nodules was studied using international reference samples.  相似文献   
74.
Petrological–geochemical study showed that the alkaline-ultramafics of the Jetty Oasis (rift zone of the Lambert glacier, East Antarctica) are similar in the age (117–110 Ma) and geochemistry to the ultrapotassic alkali basalts of eastern India (Jharia and Raniganj intrusions). Alkaline magmatism in India and Antarctica is related to the activity of the Kerguelen plume, which significantly affected the evolution of the entire eastern Indian Ocean, in particular, determined geodynamic peculiarities of the ocean opening (existence of non-spreading blocks, fragments of the Gondwana lithosphere in oceanic areas) and geochemical characteristics of erupted tholeiitic magmas. Enriched magma sources related to the Kerguelen plume were formed by melting of ancient Gondwana-derived continental fragments, which experienced multiple transformations during its evolution up to the formation of metasomatized mantle under the impact of the Kerguelen plume on the Antarctic and India margins.  相似文献   
75.
A measurement procedure for determining of Ru, Pd, Ir, Pt and Au mass fractions in ferromanganese deposits by inductively coupled plasma‐mass spectrometry after acid digestion and anion exchange preconcentration is presented. To eliminate incomplete recovery after sorption preconcentration of the platinum‐group elements (PGE) and Au, a standard addition method was used. Detection limits ranged from 0.02 ng (Pd, Ir) to 0.19 ng (Ru). The measurement results for ferromanganese nodule reference material NOD‐A‐1 and NOD‐P‐1 agree with earlier reported values. Intermediate precision of PGE concentration data for nodule reference materials in this work was 5–24% (1s) and could reflect sample heterogeneity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号