首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   6篇
  国内免费   4篇
测绘学   10篇
大气科学   11篇
地球物理   35篇
地质学   69篇
海洋学   3篇
天文学   11篇
综合类   2篇
自然地理   6篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   4篇
  2019年   2篇
  2018年   11篇
  2017年   17篇
  2016年   12篇
  2015年   5篇
  2014年   8篇
  2013年   10篇
  2012年   7篇
  2011年   6篇
  2010年   5篇
  2009年   8篇
  2008年   3篇
  2007年   3篇
  2006年   6篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1984年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
排序方式: 共有147条查询结果,搜索用时 15 毫秒
61.
基于遥感和GIS的喜马拉雅山科西河流域冰湖变化特征分析   总被引:6,自引:3,他引:3  
受全球气候变暖的影响, 冰川退缩, 冰湖数量增多和面积增大被认为指示气候变化的重要依据, 冰湖面积增大导致其潜在危险性增大. 因此, 研究冰湖的变化对于气候变化和冰湖灾害研究具有重要意义. 基于Landsat TM/ETM+遥感影像采用人工解译的方法, 获取了喜马拉雅山地区科西河流域1990年前后、2000年和2010年的冰湖数据, 并对冰湖面积>0.1 km2且一直存在的199个冰湖的面积和长度变化进行对比分析. 结果表明: 科西河流域内面积>0.1 km2的冰湖的面积呈现增加趋势, 1990年冰湖面积为73.59 km2, 2010年冰湖面积增加至86.12 km2. 科西河流域内喜马拉雅山南北坡冰湖变化存在差异, 喜马拉雅山北坡变化较大的冰湖主要分布在海拔4 800~5 600 m之间, 而南坡变化较大的冰湖主要分布在海拔4 300~5 200 m之间; 喜马拉雅山北坡的冰湖有65%的冰湖表现扩张, 且扩张冰湖的面积主要是由冰湖在靠近终碛垅的一端基本不发生变化, 而仅在靠近冰川一端发生变化贡献的; 喜马拉雅山南坡的冰湖有32%的冰湖变化表现扩张, 且扩张的冰湖面积主要来自于冰面湖扩张. 在科西河流域内, 位于喜马拉雅山北坡的冰湖平均变化速度略高于南坡的冰湖平均变化速度.  相似文献   
62.
We present Very Large Array observations at wavelengths of 2, 3.5, 6, and 20 cm, of angular broadening of radio sources due to the solar wind in the region 2–16 solar radii. Angular broadening is anisotropic with axial ratios in the range 2–16. Larger axial ratios are observed preferentially at smaller solar distances. Assuming that anisotropy is due to scattering blobs elongated along magnetic field lines, the distribution of position angles of the elliptically broadened images indicates that the field lines are non-radial even at the largest heliocentric distances observed here. At 5R , the major axis scattering angle is 0.7 at =6 cm and it varies with heliocentric distance asR –1.6. The level of turbulence, characterized by the wave structure function at a scale of 10 km along the major axis, normalized to =20 cm, has a value 20±7 at 5R and varies with heliocentric distance asR –3. Comprison with earlier results suggest that the level of turbulence is higher during solar maximum. Assuming a power-law spectrum of electron density fluctuations, the fitted spectral exponents have values in the range 2.8–3.4 for scales sizes between 2–35 km. The data suggests temporal fluctuations (of up to 10%) in the spectral exponent on a time scale of a few tens of minutes. The observed structure functions at different solar distances do not show any evidence for an inner scale; the upper limits are 1 km at 2R and 4 km at 13R . These upper limits are in conflict with earlier determinations and may suggest a reduced inner scale during solar maximum.  相似文献   
63.
64.
We study the aggradation and incision of the Alaknanda River Valley during the late Pleistocene and Holocene. The morphostratigraphy in the river valley at Deoprayag shows the active riverbed, a cut terrace, and a fill terrace. The sedimentary fabric of the fill terrace comprises four lithofacies representing 1) riverbed accretion, 2) locally derived debris fan, 3) the deposits of waning floods and 4) palaeoflood records. The sedimentation style, coupled with geochemical analysis and Optically Stimulated Luminescence (OSL) dating, indicate that this terrace formed in a drier climate and the river valley aggraded in two phases during 21–18 ka and 13–9 ka. During these periods, sediment supply was relatively higher. Incision began after 10 ka in response to a strengthened monsoon and aided by increase of the tectonic gradient. The cut terrace formed at ~ 5 ka during a phase of stable climate and tectonic quiescence. The palaeoflood records suggest wetter climate 200–300 yr ago when the floods originated in the upper catchment of the Higher Himalaya and in the relatively drier climate ~ 1.2 ka when locally derived sediments from the Lesser Himalaya dominated flood deposits. Maximum and minimum limits of bedrock incision rate at Deoprayag are 2.3 mm/a and 1.4 mm/a.  相似文献   
65.
This preliminary investigation of the recent spate of deadly flash floods and debris flows in Ladakh (India) over the last decade identifies uncontrolled development in hazardous locations as an important factor contributing to loss of life and property damage in this high mountain desert. The sediments exposed in the channel banks and on the alluvial fans of several mountain streams in the area indicate a long history of flash floods and debris flows resulting from intense storms, which appear to have increased in frequency within the last decade. The signposts of these recurrent hazards are being ignored as a growing economy, which is boosted by a well‐established tourism industry, is now driving development onto lands that are susceptible to floods and debris flow hazards. In this science briefing we argue that the increasing vulnerability in Ladakh should be addressed with sound disaster governance strategies that are proactive, rather than reactionary. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
66.
67.
Four levels of terraces located along Siang River, north of Main Central Thrust at Tuting, NE Himalaya are dated using Optically Stimulated Luminescence (OSL). The dating technique is applied using (1) Blue LED stimulation on Quartz (2) Infrared Stimulated Luminescence (IRSL) stimulation on Feldspar at 50 °C and (3) Infrared Stimulated Luminescence stimulation on Feldspar at an elevated temperature of 225 °C. The results indicated that the later two protocols on feldspars yielded overestimated ages that suggested incomplete bleaching of luminescence signals in feldspar. The ages derived using quartz suggested a nearly continued valley aggradation from >21–8 ka with three phases of bedrock incision. The phase of aggradation coincides with a climatic transition from cold and dry Last Glacial phase to warm and wet Holocene Optimum. The bedrock incision phases centered at <21 ka, ∼11 ka and ∼8 ka indicate towards major episodes of tectonic uplift in the region around Tuting.  相似文献   
68.
69.
The main objective of the study was to assess the integrated multiple hydrological hazards and their environmental and socio-economic risks in Himalaya through geographical information system (GIS) and database management system (DBMS). The Dabka Watershed constitutes a part of the Kosi Basin in the Kumaun Lesser Himalaya has been selected for the case illustration. The Dabka DBMS is constituted of three GIS modules, that is, geo-informatics, hydro-informatics and hazard-informatics. Through the integration and superimposing of these modules prepared Hydrological Hazard Index to identify the level of vulnerability for existing hydrological hazards and their socio-economic and environmental risks. The results suggested that geo-environmentally most stressed barren land areas have high rate of runoff, flood magnitude, erosion sediment load and denudation during rainy season particularly in the month of August (i.e., respectively, 84.56 l/s/km2, 871.80 l/s/km2, 78.60 t/km2 and 1.21 mm/year), which accelerates high hazards and their socio-economic and environmental risks, whereas geo-environmentally least stressed dense forest areas experience low rate of stream runoff, flood magnitude, erosion sediment load and denudation in the same season and month (i.e., respectively, 20.67 l/s/km2, 58.12 l/s/km2, 19.50 t/km2 and 0.20 mm/year) comparatively have low hazards and their socio-economic and environmental risks. The other frazzled geo-environment that also found highly vulnerable for natural hazards and their risks is agricultural land due to high stream runoff, flood magnitude, erosion sediment load and denudation rates (i.e., respectively, 53.15 l/s/km2, 217.95 l/s/km2, 90.00 t/km2 and .92 mm/year). This makes it necessary to take up an integrated and comprehensive sustainable land use policy for the entire Himalaya region based on the scientific interpretation of the crucial linkages between land use and hydrological hazards, that is, floods, erosion, landslides during rainy season and drought due to dry-up of natural springs and streams during summer season. The study would help the village, district and state development authority to formulate decision support system for alternate planning and management for the Himalaya region.  相似文献   
70.
Presence of Early Tertiary pyroclastic material (tephra) has been documented petrographically, for the first time, in the Mandi-Bilaspur Sector from Tileli area, Dharamsala basin of Himachal Pradesh. The tephra is reported from the red shale, identified as tuffaceous siltstone belonging to lower Dharamsala Formation that lies above the uraniferous sandstone body and occurs as thin layers of over 300m along the strike, close to the contact of lower and upper Dharamsala formations. The tuffaceous material shows crude but preferred orientation of minerals like biotite, muscovite, chlorite, clay, hematite and specularite. Various features indicating presence of tephra are, glass shards altered to clay but retaining ‘U’ shaped outline, spindle-shaped hematite with preferred orientation, spherical to sub-spherical clay and altered Feoxide rich balls, clay groundmass with flow pattern, flaky minerals in association with clast depicting asymmetrical ramp structure. A zone of approximately 300 m length containing tuffaceous material has been established at Tileli overlying the uraniferous sandstone body. Identification of tephra at Tileli has significant implications as it enabled in demarcating the boundary between the upper and lower Dharamsala formations in central part of the basin in Bilaspur-Mandi Sector of HP Himalaya and also in guiding the uranium exploration programme in the lower Dharamsala Formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号