首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4651篇
  免费   125篇
  国内免费   60篇
测绘学   149篇
大气科学   407篇
地球物理   1022篇
地质学   1732篇
海洋学   429篇
天文学   825篇
综合类   12篇
自然地理   260篇
  2023年   12篇
  2022年   46篇
  2021年   60篇
  2020年   70篇
  2019年   58篇
  2018年   143篇
  2017年   139篇
  2016年   172篇
  2015年   107篇
  2014年   145篇
  2013年   226篇
  2012年   196篇
  2011年   276篇
  2010年   207篇
  2009年   286篇
  2008年   237篇
  2007年   193篇
  2006年   225篇
  2005年   215篇
  2004年   307篇
  2003年   227篇
  2002年   162篇
  2001年   116篇
  2000年   104篇
  1999年   82篇
  1998年   98篇
  1997年   60篇
  1996年   37篇
  1995年   41篇
  1994年   40篇
  1993年   33篇
  1992年   41篇
  1991年   23篇
  1990年   37篇
  1989年   16篇
  1988年   16篇
  1987年   20篇
  1986年   21篇
  1985年   14篇
  1984年   20篇
  1983年   19篇
  1982年   16篇
  1981年   22篇
  1978年   24篇
  1977年   21篇
  1976年   16篇
  1975年   18篇
  1974年   16篇
  1973年   15篇
  1971年   13篇
排序方式: 共有4836条查询结果,搜索用时 218 毫秒
181.
The global navigation satellite system (GNSS) can provide centimeter positioning accuracy at low costs. However, in order to obtain the desired high accuracy, it is necessary to use high-quality atmospheric models. We focus on the troposphere, which is an important topic of research in Brazil where the tropospheric characteristics are unique, both spatially and temporally. There are dry regions, which lie mainly in the central part of the country. However, the most interesting area for the investigation of tropospheric models is the wet region which is located in the Amazon forest. This region substantially affects the variability of humidity over other regions of Brazil. It provides a large quantity of water vapor through the humidity convergence zone, especially for the southeast region. The interconnection and large fluxes of water vapor can generate serious deficiencies in tropospheric modeling. The CPTEC/INPE (Center for Weather Forecasting and Climate Studies/Brazilian Institute for Space Research) has been providing since July 2012 a numerical weather prediction (NWP) model for South America, known as Eta. It has yield excellent results in weather prediction but has not been used in GNSS positioning. This NWP model was evaluated in precise point positioning (PPP) and network-based positioning. Concerning PPP, the best positioning results were obtained for the station SAGA, located in Amazon region. Using the NWP model, the 3D RMS are less than 10 cm for all 24 h of data, whereas the values reach approximately 60 cm for the Hopfield model. For network-based positioning, the best results were obtained mainly when the tropospheric characteristics are critical, in which case an improvement of up to 7.2 % was obtained in 3D RMS using NWP models.  相似文献   
182.
In light of the many improvements within 3D urban modeling and Location‐Based Services, this article provides a timely review of the state‐of‐the‐art on integrating indoor and outdoor spaces in pedestrian navigation guidance aids. With people moving seamlessly between buildings and surrounding areas, navigation guidance tools should extend from merely outdoor or indoor guidance, to provide support in the combined indoor‐outdoor context. This article first examines the challenges and complexities of integrating indoor and outdoor spaces into a single navigation system. Next, by using objective selection criteria, 36 relevant studies were withheld and further reviewed on their specific developments in data model requirements, and algorithmic and context support for integrated IO navigation systems. This review shows that the challenges of dealing with both indoor and outdoor space structures, while taking into account pedestrian's freer use of space, currently complicate the proposition of a unified IO space concept for navigation. However, there are some ongoing developments (e.g. context definitions, algorithmic extensions, increased data availability, growing awareness of pedestrians’ perception during wayfinding) that will help to bring outdoor and indoor spaces closer together in the realm of combined geospatial analysis.  相似文献   
183.
184.
185.
186.
Leaf mechanical traits are important to understand how aquatic plants fracture and deform when subjected to abiotic (currents or waves) or biotic (herbivory attack) mechanical forces. The likely occurrence of variation during leaf ontogeny in these traits may thus have implications for hydrodynamic performance and vulnerability to herbivory damage, and may be associated with changes in morphologic and chemical traits. Seagrasses, marine flowering plants, consist of shoot bundles holding several leaves with different developmental stages, in which outer older leaves protect inner younger leaves. In this study we examined the long‐lived seagrass Posidonia oceanica to determine ontogenic variation in mechanical traits across leaf position within a shoot, representing different developmental stages. Moreover, we investigated whether or not the collection procedure (classical uprooted shoot versus non‐destructive shoot method: cutting the shoot without a portion of rhizome) and time span after collection influence mechanical measurements. Neither collection procedure nor time elapsed within 48 h of collection affected measurements of leaf biomechanical traits when seagrass shoots were kept moist in dark cool conditions. Ontogenic variation in mechanical traits in P. oceanica leaves over intermediate and adult developmental stages was observed: leaves weakened and lost stiffness with aging, while mid‐aged leaves (the longest and thickest ones) were able to withstand higher breaking forces. In addition, younger leaves had higher nitrogen content and lower fiber content than older leaves. The observed patterns may explain fine‐scale within‐shoot ecological processes of leaves at different developmental stages, such as leaf shedding and herbivory consumption in P. oceanica.  相似文献   
187.
Although underwater visual census (UVC) is the most frequently used technique for quantifying reef fish assemblages, remote video analysis has been gaining attention as a potential alternative. In the South Atlantic Ocean, Millepora spp. (class Hydrozoa) are the only branching coral species; however, little is known about the ecological role that they play for reef fish communities. We compared these two observation methods (remote video and UVC) to estimate reef fish abundance and species richness associated with colonies of the fire‐coral Millepora alcicornis at Tamandaré Reefs, Northeast Brazil. Additionally, the two different techniques were used to compare species behaviour in association with fire‐corals in order to examine the biases associated with each technique and provide useful information for behavioural ecologists studying fish–coral associations. There were no differences in reef fish abundance or species richness sampled by remote video or UVC. However, a significant difference in the behaviour of associated fish was recorded between the two methods. In the presence of a diver carrying out a UVC, fish were observed spending more time sheltered amongst the coral branches compared with passively swimming on coral colonies with the remote video technique. Specifically, on the remote video recordings agonistic interactions between fish and passive swimming accounted for 33.3% and 22.2% of the census time, respectively. By comparison, when observed by a diver fish spent 34.8% of their time sheltering amongst the coral branches. We demonstrate that both techniques are similarly effective for recording fish abundance and species richness associated with fire‐corals. However, differences were observed in the ability of each method to detect the behaviour of coral‐associated fishes. Our findings show that behavioural ecologists studying complex fish–coral associations need to ensure that their aims are clearly defined and that they choose the most appropriate technique for their study in order to minimize methodological biases.  相似文献   
188.
ABSTRACT

Oil spill forecast modelling is typically used immediately after a spill to predict oil dispersal and promote mobilisation of more effective response operations. The aim of this work was to map oil dispersal after the grounding of the MV Rena on Astrolabe Reef and to verify the results against observations. Model predictions were broadly consistent with observed distribution of oil contamination. However, some hot spots of oil accumulation, likely due to surf-zone and rip current circulation, were not well represented. Additionally, the model was run with 81 differing wind conditions to show that the events occurring during the grounding represented the typical likely behaviour of an oil spill on Astrolabe Reef. Oil dispersal was highly dependent on prevailing wind patterns; more accurate prediction would require better observations of local wind patterns. However, comparison of predictions with observations indicated that the GNOME model was an effective low-cost approach.  相似文献   
189.
The article presents a review of scientific problems and methods of ultraviolet astronomy, focusing on perspective scientific problems (directions) whose solution requires UV space observatories. These include reionization and the history of star formation in the Universe, searches for dark baryonic matter, physical and chemical processes in the interstellar medium and protoplanetary disks, the physics of accretion and outflows in astrophysical objects, from Active Galactic Nuclei to close binary stars, stellar activity (for both low-mass and high-mass stars), and processes occurring in the atmospheres of both planets in the solar system and exoplanets. Technological progress in UV astronomy achieved in recent years is also considered. The well advanced, international, Russian-led Spektr-UV (World Space Observatory—Ultraviolet) project is described in more detail. This project is directed at creating a major space observatory operational in the ultraviolet (115–310 nm). This observatory will provide an effective, and possibly the only, powerful means of observing in this spectral range over the next ten years, and will be an powerful tool for resolving many topical scientific problems.  相似文献   
190.
The geochemical cycles of iron and sulphur in marine sediments are strongly intertwined and give rise to a complex network of redox and precipitation reactions. Bioturbation refers to all modes of transport of particles and solutes induced by larger organisms, and in the present-day seafloor, bioturbation is one of the most important factors controlling the biogeochemical cycling of iron and sulphur. To better understand how bioturbation controls Fe and S cycling, we developed reactive transport model of a coastal sediment impacted by faunal activity. Subsequently, we performed a model sensitivity analysis, separately investigating the two different transport modes of bioturbation, i.e. bio-mixing (solid particle transport) and bio-irrigation (enhanced solute transport). This analysis reveals that bio-mixing and bio-irrigation have distinct—and largely opposing effects on both the iron and sulphur cycles. Bio-mixing enhances transport between the oxic and suboxic zones, thus promoting the reduction of oxidised species (e.g. iron oxyhydroxides) and the oxidation of reduced species (e.g. iron sulphides). Through the re-oxidation of iron sulphides, bio-mixing strongly enhances the recycling of Fe and S between their reduced and oxidised states. Bio-irrigation on the other hand removes reduced solutes, i.e. ferrous iron and free sulphide, from the sediment pore water. These reduced species are then reoxidised in the overlying water and not recycled within the sediment column, which leads to a decrease in Fe and S recycling. Overall, our results demonstrate that the ecology of the macrofauna (inducing bio-mixing or bio-irrigation, or both) matters when assessing their impact on sediment geochemistry. This finding seems particularly relevant for sedimentary cycling across Cambrian transition, when benthic fauna started colonizing and reworking the seafloor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号