首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
大气科学   1篇
地球物理   2篇
地质学   6篇
海洋学   1篇
天文学   9篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  1998年   3篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
11.
Holocene temperature fluctuations in the northern Tibetan Plateau   总被引:4,自引:0,他引:4  
Arid Central Asia (ACA) lies on a major climatic boundary between the mid-latitude westerlies and the northwestern limit of the Asian summer monsoon, yet only a few high-quality reconstructions exist for its climate history. Here we calibrate a new organic geochemical proxy for lake temperature, and present a 45-yr-resolution temperature record from Hurleg Lake at the eastern margin of the ACA in the northern Tibetan Plateau. Combination with other proxy data from the same samples reveals a distinct warm–dry climate association throughout the record, which contrasts with the warm–wet association found in the Asian monsoon region. This indicates that the climatic boundary between the westerly and the monsoon regimes has remained roughly in the same place throughout the Holocene, at least near our study site. Six millennial-scale cold events are found within the past 9000 yr, which approximately coincide with previously documented events of northern high-latitude cooling and tropical drought. This suggests a connection between the North Atlantic and tropical monsoon climate systems, via the westerly circulation. Finally, we also observe an increase in regional climate variability after the mid-Holocene, which we relate to changes in vegetation (forest) cover in the monsoon region through a land-surface albedo feedback.  相似文献   
12.
Growing interest in the dynamics and temporal variability of the deep western boundary current (DWBC) in the northern North Atlantic has led to numerous studies of the modern hydrography and palaeoceanography of this current system. The DWBC is fed by the two dense water-masses that spill over the Greenland–Iceland–Scotland Ridge; Denmark Strait Overflow Water (DSOW) and Iceland Scotland Overflow Water (ISOW). These overflows entrain ambient water masses, primarily Labrador Sea Water (LSW), as they cross the Iceland and Irminger Basins before merging in the vicinity of south-east Greenland. A number of studies have been performed around the Eirik Drift, located off the southern Greenland margin, downstream of this main merging point. However, the relationship between the DWBC and the associated sedimentation at this location has yet to be fully elucidated. New hydrographic data show that the current's main sediment load is carried by only one of its components, the DSOW. Seismic surveys and sediment cores confirm that Holocene sedimentation is limited to areas underlying the most offshore part of the current, where the hydrographic data show the highest concentration of DSOW. Active sedimentation through the Holocene therefore appears to have been controlled by proximity to the sediment-laden DSOW.Our interpretation of new and historic geostrophic transport and tracer data from transects around the southern Greenland margin also suggests that the DWBC undergoes significant growth through entrainment as it flows around the Eirik Drift. We attribute this to multiple strands of ISOW following different depth-dependent pathways between exiting the Charlie Gibbs Fracture Zone and joining the DWBC. Comparison of our new data with other modern hydrographic datasets reveals significant temporal variability in the DWBC, associated with variations in the position, structure and age since ventilation of the current in the vicinity of Eirik Drift. The complexity of the current dynamics in this area has implications for the interpretation of hydrographic and palaeoceanographic data.  相似文献   
13.
14.
Sediment deposition is one of the key mechanisms to counteract the impact of sea level rise in tidal freshwater wetlands (TFWs). However, information about sediment deposition rates in TFWs is limited, especially for those located in the transition zone between the fluvially dominated and tidally dominated sections of a river delta where sedimentation rates are affected by the combined impact of river discharge, wind, and tides. Using a combined hydrodynamic–morphological model, we examined how hydrometeorological boundary conditions control sedimentation rates and patterns in a TFW located in the Rhine–Meuse estuary in the Netherlands. The modelling results show that net sedimentation rate increases with the magnitude of the river discharge, whereas stronger wind increasingly prevents sedimentation. Sediment trapping efficiency decreases for both increasing river discharge and wind magnitude. The impact of wind storms on the trapping efficiency becomes smaller for higher water discharge. The spatial sedimentation patterns are affected by all controls. Our study illustrates the importance of evaluating both the separate and the joint impact of discharge, wind, and tides when estimating sedimentation rates in a TFW affected by these controls. Such insights are relevant to design measures to reactivate the sedimentation process in these areas.  相似文献   
15.
Changes in the orbital parameters, solar output, and ocean circulation are widely considered as main drivers of the Holocene climate. Yet, the interaction between these forcings and the role that they play to produce the pattern of changes observed in different domains of the climate system remain debated. Here, we present new early to middle Holocene season-specific sea surface temperature (SST) and δ18Oseawater results, based on organic-walled dinoflagellate cyst and planktonic foraminiferal data from two sediment cores located in the central (SL21) and south-eastern (LC21) Aegean Sea (eastern Mediterranean). Today, this region is affected by high to mid latitude climate in winter and tropical/subtropical climate in summer. The reconstructed δ18Oseawater from LC21 displays a marked (~1.3%) negative shift between 10.7 and 9.7 ka BP, which represents the regional expression of the orbitally driven African monsoon intensification and attendant freshwater flooding into the eastern Mediterranean. A virtually contemporaneous shift, of the same sign and magnitude, is apparent in the δ18Ospeleothem record from Soreq Cave (Northern Israel), an important part of which may therefore reflect a change in the isotopic composition of the moisture source region (Aegean and Levantine Seas). Our SST reconstructions show that Aegean winter SSTs decreased in concert with intensifications of the Siberian High, as reflected in the GISP2 nss [K+] record. Specifically, three distinct sea surface cooling events at 10.5, 9.5–9.03 and 8.8–7.8 ka BP in the central Aegean Sea match increases in GISP2 nss [K+]. These events also coincide with dry interludes in Indian monsoon, hinting at large (hemispheric) scale teleconnections during the early Holocene on centennial timescales. A prominent short-lived (~150 years) cooling event in core SL21 – centred on 8.2 ka BP – is coeval to the ‘8.2 ka BP event’ in the Greenland δ18Oice, which is commonly linked to a melt-water related perturbation of the Atlantic Meridional Overturning Circulation and associated ocean heat transport. By deciphering the phasing between a recently published record of reduced overflow from the Nordic Seas into the northern North Atlantic, the Greenland δ18Oice ‘8.2 ka BP event’ anomaly, and the short-lived cooling in SL21, we demonstrate severe far-field impacts of this North Atlantic event in the Aegean Sea. The Aegean is isolated from the North Atlantic oceanic circulation, so that signal transmission must have been of an atmospheric nature.  相似文献   
16.
17.
18.
19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号