首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   1篇
大气科学   1篇
地球物理   57篇
地质学   29篇
海洋学   1篇
天文学   1篇
自然地理   5篇
  2023年   1篇
  2020年   1篇
  2019年   3篇
  2018年   5篇
  2016年   5篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   3篇
  2011年   6篇
  2010年   8篇
  2009年   4篇
  2008年   4篇
  2007年   3篇
  2006年   6篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1989年   1篇
  1987年   1篇
  1985年   4篇
  1984年   1篇
  1982年   1篇
排序方式: 共有94条查询结果,搜索用时 546 毫秒
21.
According to classical critical state theory (CST) of granular mechanics, two analytical conditions on the ratio of stress invariants and the void ratio are postulated to be necessary and sufficient for reaching and maintaining critical state (CS). The present work investigates the sufficiency of these two conditions based on the results of a virtual three-dimensional discrete element method experiment, which imposes continuous rotation of the principal axes of stress with fixed stress principal values at CS. Even though the fixity of the stress principal values satisfies the two analytical CST conditions at the initiation of rotation, contraction and abandonment of CS occur, which proves that these conditions may be necessary but are not sufficient to maintain CS. But if fixity of stress and strain rate directions in regard to the sample is considered at CS, the two analytical conditions of CST remain both necessary and sufficient. The recently proposed anisotropic critical state theory (ACST) turned this qualitative requirement of fixity into an analytical condition related to the CS value of a fabric anisotropy variable A defined in terms of an evolving fabric tensor and the plastic strain rate direction, thus, enhancing the two CST conditions by a third. In this way, the three analytical conditions of ACST become both necessary and sufficient for reaching and maintaining CS. In addition, the use of A explains the observed results by relating the stress-strain response, in particular the dilatancy, to the evolution of fabric by means of the relevant equations of ACST.  相似文献   
22.
Summary. A preliminary study of the aftershocks of three earthquakes that occurred near to Corinth (Greece) in 1981 is combined with observations of the morphology and faulting to understand the evolution of the Eastern Gulf of Corinth. The well located aftershocks form a zone 60km long and 20km wide. They do not lie on the main fault planes and are mostly located between the north-dipping faulting on which the first two earthquakes occurred and the south-dipping faulting associated with the third event. A cluster of aftershocks also lies in the footwall of the eastern end of the south-dipping fault of the third event.
Morphologically, it is observed that in the evolution of the Eastern Gulf of Corinth, antithetic faulting apparently predates the appearance of the main faulting at the surface. This evolution can be explained by motion on a deep seated, shallow angle, aseismic normal fault. A model based on such a fault also accounts for the aftershock distribution of the 1981 earthquakes.  相似文献   
23.
Investigation of the time-dependent seismicity in 274 seismogenic regions of the entire continental fracture system indicates that strong shallow earthquakes in each region exhibit short as well as intermediate term time clustering (duration extending to several years) which follow a power-law time distribution. Mainshocks, however (interevent times of the order of decades), show a quasiperiodic behaviour and follow the ‘regional time and magnitude predictable seismicity model’. This model is expressed by the following formulas $$\begin{gathered} \log T_t = 0.19 M_{\min } + 0.33 M_p - 0.39 \log m_0 + q \hfill \\ M_f = 0.73 M_{\min } - 0.28 M_p + 0.40 \log m_0 + m \hfill \\ \end{gathered} $$ which relate the interevent time,T t (in years), and the surface wave magnitude,M f , of the following mainshock: with the magnitude,M min, of the smallest mainshock considered, the magnitude,M p , of the preceded mainshock and the moment rate,m 0 (in dyn.cm.yr?1), in a seismogenic region. The values of the parametersq andm vary from area to area. The basic properties of this model are described and problems related to its physical significance are discussed. The first of these relations, in combination with the hypothesis that the ratioT/T t , whereT is the observed interevent time, follows a lognormal distribution, has been used to calculate the probability for the occurrence of the next very large mainshock (M s ≥7.0) during the decade 1993–2002 in each of the 141 seismogenic regions in which the circum-Pacific convergent belt has been separated. The second of these relations has been used to estimate the magnitude of the expected mainshock in each of the regions.  相似文献   
24.
Information concerning two seismic lines, the first located northwest of the Lefkada Island and the second from the deep Ionian basin to the gulf of Patras, is used to trace the Kefalonia Transform Zone (KTZ) and to explore its relation with the sedimentary sequences and the deeper geologic structures in the study area. In addition, sea bottom topography and fault plane solutions are combined in order to explore the prolongation of the KTZ into the Ionian Abyssal Plain (IoAP) and to describe its properties. The boundary between the subduction of the eastern Mediterranean oceanic crust under the overriding continental crust and the KTZ is well constrained by the seismic data in association with seismicity and regional stress field. The southern prolongation of the KTZ is located in the IoAP towards the direction between Kefalonia and Zakynthos Islands at depth greater than 15 km. The southern part of the KTZ exhibits a strike–slip motion with a thrust component according to fault plane solutions of moderate and strong earthquakes. The seismic section mostly confirms the existence of the thrust component and gives information about the tectonic status east and west of the KTZ.  相似文献   
25.
An earthquake sequence comprising almost 2000 events occurred in February–July 2001 on the southern coast of the Corinth Gulf.Several location methods were applied to 171 events recorded by the regional network PATNET. The unavailability of S-wave readings precluded from reliable depth determination. For the mainshock of April 8, ML= 4.7, the depth varied from 0 to 20 km. The amplitude spectra of complete waveforms at three local stations (KER,SER, DES; epicentral distances 17, 26 and 56 km) were inverted between 0.1 and 0.2 Hz for double-couple focal mechanism and also for the depth. The optimum solution (strike 220°, dip 40°, rake ‒160°, and depth of 8 km) was validated by forward waveform modeling.Additionally, the mainshock depth was further supported by the P- and S-wave arrival times from the local short-period network CRLNET (Corinth Rift Laboratory).The scalar seismic moment was 2.5e15 Nm,and the moment rate function was successfully simulated by a triangle of the 0.5 second duration. This is equivalent to a 1–1.5 km fault length, and a static stress drop 2–6 MPa. This value is important for future strong ground motion simulation of damaging earthquakes in Aegion region, whose subevents may be modeled according to the studied event. The T axis of the mainshock (azimuth 176° and plunge 67°), is consistent with the regional direction of extension N10°. However, none of the nodal planes can be associated to an active structure seen at the surface. The relationship of this earthquake sequence with deeper faults (e.g. possible detachment at about 10 km) is also unclear.  相似文献   
26.
Earthquake Triggering along the Xianshuihe Fault Zone of Western Sichuan,China   总被引:19,自引:0,他引:19  
Western Sichuan is among the most seismically active regions in southwestern China and is characterized by frequent strong (M 6.5) earthquakes, mainly along the Xianshuihe fault zone. Historical and instrumental seismicity show a temporal pattern of active periods separated by inactive ones, while in space a remarkable epicenter migration has been observed. During the last active period starting in 1893, the sinistral strike–slip Xianshuihe fault of 350 km total length, was entirely broken with the epicenters of successive strong earthquakes migrating along its strike. This pattern is investigated by resolving changes of Coulomb failure function (CFF) since 1893 and hence the evolution of the stress field in the area during the last 110 years. Coulomb stress changes were calculated assuming that earthquakes can be modeled as static dislocations in an elastic halfspace, and taking into account both the coseismic slip in strong (M 6.5) earthquakes and the slow tectonic stress buildup associated with major fault segments. The stress change calculations were performed for faults of strike, dip, and rake appropriate to the strong events. We evaluate whether these stress changes brought a given strong earthquake closer to, or sent it farther from, failure. It was found that all strong earthquakes, and moreover, the majority of smaller events for which reliable fault plane solutions are available, have occurred on stress–enhanced fault segments providing a convincing case in which Coulomb stress modeling gives insight into the temporal and spatial manifestation of seismic activity. We extend the stress calculations to the year 2025 and provide an assessment for future seismic hazard by identifying the fault segments that are possible sites of future strong earthquakes.  相似文献   
27.
Repeat times of large shocks are obtained for 17 seismic fracture zones of the Aegean and surrounding area, from times of historic and present century earthquakes. The mean standard deviation of the repeat times is approximately 50% of any one observation.A probabilistic approach is then used to forecast the likelihood of large future earthquakes in each fracture zone, using as input the time of the last large shock, the average repeat time and its standard deviation. Shallow and intermediate depth earthquakes are examined separately. The calculated probabilities are high for the entire Hellenic arc, both for shallow and intermediate depth seismicity, for the area of Leucas island (Ionian), of Lesbos island (Aegean), for Patraikos-west Corinthiakos Gulfs, for Evoikos Gulf as well as for southern Bulgaria.The probability estimates based on the most recent large earthquakes, involve a number of basic physical assumptions and we would think that they provide a semi-stochastic approach to the problem of earthquake prediction in Greece.  相似文献   
28.
Earthquake recurrence intervals for large and great shallow mainshocks in 12 seismogenic sources along the North Pacific seismic zone (Alaska-Aleutians-Kamchatka-Kuril Islands) have been estimated and used for the determination of the following relations:
  相似文献   
29.
Occurrence patterns of large shallow and intermediate depth earthquakes in the seismic zones along the Hellenic Arc have been investigated. It is shown that throughout this active region the earthquakes tend to occur in a rather systematic manner. At each time-period earthquakes occur within a discrete activated segment of the arc. These occurrence patterns are considered to offer an insight into identifying where large earthquakes are expected to occur in the future.  相似文献   
30.
During 3 weeks in 1985, we operated a dense network of portable seismological stations around the city of Thessaloniki, in Northern Greece, where a destructive earthquake had occurred in 1978. We recorded 282 microearthquakes, with magnitudes ranging between -0.2 to 3.0, and we computed 22 Fault Plane Solutions. The experiment was designed to map the stress pattern west of the 1978 shock, and to study the Asvestohorio fault. Around this fault, located near Thessaloniki, Mercier et al. (1983) observed a few cracks during the 1978 shock. The seismicity shows the same scattered pattern seen through the whole Chalkidiki region. We observe also a dense cluster around Asvestohorio, but this cluster is probably related to explosions in nearby mines. After filtering the data from possible explosions we found evidence of seismic activity. The earthquakes are dipping toward the NE, suggesting that the Asvestohorion fault is active. The Fault Plane Solutions do not help in defining the geometry of the fault but the P and T-axes are consistent with the regional stress pattern.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号