首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   2篇
大气科学   2篇
地球物理   6篇
地质学   4篇
海洋学   5篇
天文学   1篇
自然地理   7篇
  2021年   1篇
  2017年   2篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  1997年   1篇
  1996年   1篇
  1991年   1篇
  1989年   1篇
  1982年   1篇
排序方式: 共有25条查询结果,搜索用时 109 毫秒
21.
A magnetostratigraphy‐based chronological framework has been constructed in the Eocene sediments of the Montserrat alluvial fan/fan‐delta complex (southeast Ebro Basin), in order to unravel forcing controls on their sequential arrangement and to revise the tectonosedimentary history of the region. The palaeomagnetic study is based on 403 sites distributed along an 1880‐m‐thick composite section, and provides improved temporal constraints based on an independent correlation to the geomagnetic polarity time scale. The new chronological framework together with sequence stratigraphy and geohistory analysis allow us to investigate the interplay between factors controlling the sequential arrangement of the Montserrat complex at the different temporal scales and to test for orbitally driven climate forcing. The results suggest that the internal stacking pattern in transgressive and regressive sequences sets within the more than 1000‐m‐thick Milany Composite Megasequence can be explained as the result of subsidence‐driven accommodation changes under a general increase of sediment supply. Composite sequences (tens to hundreds of metres thick) likely reflect orbitally forced cyclicity related to the 400‐kyr eccentricity cycle, possibly controlled by climatically induced sea‐level fluctuations. This study also provides new insights on the deformational history of the area, and shows a correlation between (tectonic) subsidence and forelimb rotation measured on basin‐margin deformed strata. Integration of subsidence curves from different sectors of the eastern Ebro Basin allows us to estimate the variable contribution of tectonic loads from the two active basin margins: the Catalan Coastal Ranges and the Pyrenees. The results support the presence of a double flexure from Late Lutetian to Late Bartonian, associated with the two tectonically active margins. From Late Bartonian to Early Priabonian the homogenization of subsidence values is interpreted as the result of the coupling of the two sources of tectonic load.  相似文献   
22.
A deliberate tracer experiment has been carried out in an enclosed lagoon in a coastal area. The tracer used was a perfluorocarbon, perfluoro- -methyldecalin (PMD), analysed using liquid-liquid extraction and electron capture gas chromatography. The results show good recovery of the tracer, indicating that adsorption and volatilization did not occur to an appreciable extent over the short time period of the experiment. A mathematical model, PHOENICS, developed for simulation of flow systems, was used to simulate the experiment.  相似文献   
23.
A theoretical model predicting how anisotropy of magnetic susceptibility (AMS) and vesicle fabrics are modified by shear stress resolved on the dike walls prior to the final cooling of magma is developed for vertical dikes. The resulting fabrics are asymmetric with respect to initial fabrics assumed to be symmetric. Application of this model together with collected data on magma flow direction, dike propagation direction and mechanism, and shear sense, allow us to interpret dike fabrics in terms of shear resolved on the dike walls during intrusion (en echelon arrangement, offsetting, and dike curvature). The interpretation of AMS and vesicle fabrics of the margins of four dikes shows a reasonable agreement with the proposed theoretical models, suggesting that asymmetric fabrics can be used to infer magma flow and may provide valuable information on the shear resolved on the dike walls during intrusion.  相似文献   
24.
The origin of bromoform in seawater and atmosphere, as well as possible sinks and breakdown mechanisms, is discussed. A bromoform budget is calculated for the Kattegatt area between Sweden and Denmark, where the input of bromoform from a power plant is significant. Both anthropogenically (250×106 g yr-1) and biogenically (350×106 g yr-1, 0.016 g m-2 yr-1) produced bromoform is likely to have a great impact locally on the inventory and the release to the atmosphere. Using measured surface concentrations of bromoform, the total annual release from the Kattegatt to the atmosphere is estimated to 550×106 g (0.025 g m-2 yr-1).  相似文献   
25.
This paper presents new magnetostratigraphic results from a 1100‐m‐thick composite section across the marine to continental sediments of the central part of the SE margin of the Ebro basin (NE Spain). Integration with existing marine and continental biochronological data allows a robust correlation with the geomagnetic polarity time scale. The resulting absolute chronology ranges from 36.3 to 31.1 Ma (Priabonian to Rupelian), and yields an interpolated age of ~36.0 Ma (within chron C16n.2n) for the youngest marine sediments of the eastern Ebro basin. This age is in concordance with a reinterpretation of earlier magnetostratigraphic data from the western South Pyrenean foreland basin, and indicates that continentalization of the basin occurred as a rapid and isochronous event. The basin continentalization, determined by the seaway closure that resulted from the uplift of the western Pyrenees, was probably coincident with a mid‐amplitude eustatic sea level low with a maximum at 36.2 Ma. The base level drop that followed the basin closure and desiccation does not appear associated to a significant sedimentary hiatus along the margins, suggesting a late Eocene shallow marine basin that rapidly refilled and raised its base level after the seaway closing. Rapid basin filling following continentalization predates the phase of rapid exhumation of the Central Pyrenean Axial Zone from 35.0 to 32.0 Ma, determined from the thermochronology data. It is possible then that sediment aggradation at the front of the fold‐and‐thrust belt could have contributed to a decrease in the taper angle, triggering growth of the inner orogenic wedge through break‐back thrusting and underplating. Contrasting sedimentation trends between the western and eastern sectors of the South Pyrenean foreland indicate that basin closing preferentially affected those areas subjected to sediment bypass towards the ocean domain. As a result, sediment ponding after basin closure is responsible for a two‐fold increase of sedimentation rates in the western sector, while changes of sedimentation rates are undetected in the more restricted scenario of the eastern Ebro basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号