首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2474篇
  免费   112篇
  国内免费   32篇
测绘学   49篇
大气科学   216篇
地球物理   526篇
地质学   871篇
海洋学   187篇
天文学   520篇
综合类   4篇
自然地理   245篇
  2022年   11篇
  2021年   39篇
  2020年   38篇
  2019年   28篇
  2018年   58篇
  2017年   54篇
  2016年   101篇
  2015年   58篇
  2014年   83篇
  2013年   150篇
  2012年   65篇
  2011年   125篇
  2010年   112篇
  2009年   132篇
  2008年   134篇
  2007年   137篇
  2006年   143篇
  2005年   97篇
  2004年   94篇
  2003年   77篇
  2002年   76篇
  2001年   65篇
  2000年   55篇
  1999年   59篇
  1998年   59篇
  1997年   37篇
  1996年   28篇
  1995年   29篇
  1994年   30篇
  1993年   26篇
  1992年   13篇
  1991年   23篇
  1990年   26篇
  1989年   27篇
  1988年   15篇
  1987年   24篇
  1986年   29篇
  1985年   22篇
  1984年   12篇
  1983年   22篇
  1982年   22篇
  1981年   20篇
  1980年   23篇
  1979年   16篇
  1978年   12篇
  1977年   13篇
  1976年   14篇
  1974年   9篇
  1973年   10篇
  1972年   14篇
排序方式: 共有2618条查询结果,搜索用时 15 毫秒
991.

Background

Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite [α-Fe(OOH)]. Ab initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Several exchange correlation functionals were employed (PBE96, PBE96 + Grimme, and PBE0) in the simulations of a (3 × 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a = 30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick).

Results

The lowest energy goethite (100) surface termination model was determined to have an exposed surface Fe3+ that was loosely capped by a water molecule and a shared hydroxide with a neighboring surface Fe3+. The water molecules capping surface Fe3+ ions were found to be loosely bound at all DFT levels with and without Grimme corrections, indicative that each surface Fe3+ was coordinated with only five neighbors. These long bonds were supported by bond valence theory calculations, which showed that the bond valence of the surface Fe3+ was saturated and surface has a neutral charge. The polarization of the water layer adjacent to the surface was found to be small and affected only the nearest water. Analysis by density difference plots and localized Boys orbitals identified three types of water molecules: those loosely bound to the surface Fe3+, those hydrogen bonded to the surface hydroxyl, and bulk water with tetrahedral coordination. Boys orbital analysis showed that the spin down lone pair orbital of the weakly absorbed water interact more strongly with the spin up Fe3+ ion. These weakly bound surface water molecules were found to rapidly exchange with the second water layer (~0.025 exchanges/ps) using a dissociative mechanism.

Conclusions

Water molecules adjacent to the surface were found to only weakly interact with the surface and as a result were readily able to exchange with the bulk water. To account for the large surface Fe–OH2 distances in the DFT calculations it was proposed that the surface Fe3+ atoms, which already have their bond valence fully satisfied with only five neighbors, are under-coordinated with respect to the bulk coordination.
Graphical abstract All first principle calculations, at all practically achievable levels, for the goethite 100 aqueous interface support a long bond and weak interaction between the exposed surface Fe3+ and water molecules capping the surface. This result is supported by bond valence theory calculations and is indicative that each surface Fe3+ is coordinated with only 5 neighbors.
  相似文献   
992.
The Cambrian–lower Ordovician volcanic units of the South Armorican and Occitan domains are analysed in a tectonostratigraphic survey of the French Variscan Belt. The South Armorican lavas consist of continental tholeiites in middle Cambrian–Furongian sequences related to continental break-up. A significant volcanic activity occurred in the Tremadocian, dominated by crustal melted rhyolitic lavas and initial rifting tholeiites. The Occitan lavas are distributed into five volcanic phases: (1) basal Cambrian rhyolites, (2) upper lower Cambrian Mg-rich tholeiites close to N-MORBs but crustal contaminated, (3) upper lower–middle Cambrian continental tholeiites, (4) Tremadocian rhyolites, and (5) upper lower Ordovician initial rift tholeiites. A rifting event linked to asthenosphere upwelling took place in the late early Cambrian but did not evolve. It renewed in the Tremadocian with abundant crustal melting due to underplating of mixed asthenospheric and lithospheric magmas. This main tectono-magmatic continental rift is termed the “Tremadocian Tectonic Belt” underlined by a chain of rhyolitic volcanoes from Occitan and South Armorican domains to Central Iberia. It evolved with the setting of syn-rift coarse siliciclastic deposits overlain by post-rift deep water shales in a suite of sedimentary basins that forecasted the South Armorican–Medio-European Ocean as a part of the Palaeotethys Ocean.  相似文献   
993.
Anthropogenic alteration of terrestrial shorelines can have pronounced effects on marine environments at the upland-marsh boundary. Possible terrestrial development effects on several physical and biological variables of high-marsh habitats were examined along developed and undeveloped shorelines in an ocean-dominated, southeastern US estuary. Analyses of sediment characteristics suggested development of the upland boundary affected physical conditions within the high-marsh. For example, pore water salinities were greater along undeveloped shorelines during a non-drought period even after rain events. Significant floral and faunal differences also existed between shoreline treatments. Black needle rush stems were significantly taller and marsh periwinkle densities significantly greater, but eastern coffee bean snail densities were significantly reduced along developed shorelines. Benthic infaunal community abundance and composition also were significantly different between shoreline treatments with sand fly larvae, human pest precursors, either only present or present in greater densities along developed shorelines. Sediment respirometry experiments indicated significant differences in heterotrophic and autotrophic processes occurring between shoreline treatments. Greater sediment surface temperatures along developed shorelines provided one possible mechanism driving high-marsh responses to boundary alteration. The history and extent of shoreline development along with a tendency in ocean-dominated southeastern marshes to resist change likely influenced current ecological conditions within our high-marsh study areas. A greater understanding of the driving mechanisms producing localized effects on salt marshes and recognizing regional differences in marsh resistance to change will facilitate predictions of shoreline development consequences and help in proposing effective management strategies for coastal boundaries.  相似文献   
994.
Mollusc death assemblages were recovered in 98 subtidal sampling stations on the seafloor of the shallow Pertuis Charentais Sea (Atlantic coast of France). Taxonomic composition and spatial distribution of death assemblages were investigated, as well as their response to sediment grain size (field data), bottom shear stress (coupled tide and wave hydrodynamic modelling), and sediment budget (bathymetric difference map). Results showed that molluscs are likely to be reliable paleoenvironmental indicators since death assemblages were able to acquire ecological changes within years (decadal-scale taphonomic inertia), and live–dead agreement inferred from existing data on living benthic communities was high, except close to river mouths and intertidal mudflats that provide terrestrial and intertidal species to subtidal death assemblages, respectively. Taxonomic composition of these within-habitat death assemblages strongly depended on sediment grain size and bottom shear stress, similarly to living subtidal communities. Post-mortem dispersal of shells, owing to relatively low bottom shear stress in the area, was only of a few 10s to 100s of meters, which shows that death assemblages preserved environmental gradients even at a fine spatial scale. Sediment budget had also a significant influence on death assemblages. Thick-shelled epifaunal species were correlated with erosion areas on one side, and thin-shelled infaunal species with deposition on the other, showing that mollusc fossil assemblages could be used as indicators of paleo-sedimentation rate. This new proxy was successfully tested on a previously published Holocene mollusc fossil record from the same area. It was possible to refine the paleoenvironmental interpretation already proposed, in accordance with existing stratigraphic and sedimentological data.  相似文献   
995.
996.
Cristobalite is a low-pressure high-temperature polymorph of SiO2 found in many volcanic rocks. Its volcanogenic formation has received attention because (1) pure particulate cristobalite can be toxic when inhaled, and its dispersal in volcanic ash is therefore a potential hazard; and (2) its nominal stability field is at temperatures higher than those of magmatic systems, making it an interesting example of metastable crystallization. We present analyses (by XRD, SEM, EPMA, Laser Raman, and synchrotron μ-cT) of representative rhyolitic pyroclasts and of samples from different facies of the compound lava flow from the 2011–2012 eruption of Cordón Caulle (Chile). Cristobalite was not detected in pyroclasts, negating any concern for respiratory hazards, but it makes up 0–23 wt% of lava samples, occurring as prismatic vapour-deposited crystals in vesicles and/or as a groundmass phase in microcrystalline samples. Textures of lava collected near the vent, which best represent those generated in the conduit, indicate that pore isolation promotes vapour deposition of cristobalite. Mass balance shows that the SiO2 deposited in isolated pore space can have originated from corrosion of the adjacent groundmass. Textures of lava collected down-flow were modified during transport in the insulated interior of the flow, where protracted cooling, additional vesiculation events, and shearing overprint original textures. In the most slowly cooled and intensely sheared samples from the core of the flow, nearly all original pore space is lost, and vapour-deposited cristobalite crystals are crushed and incorporated into the groundmass as the vesicles in which they formed collapse by strain and compaction of the surrounding matrix. Holocrystalline lava from the core of the flow achieves high mass concentrations of cristobalite as slow cooling allows extensive microlite crystallization and devitrification to form groundmass cristobalite. Vapour deposition and devitrification act concurrently but semi-independently. Both are promoted by slow cooling, and it is ultimately devitrification that most strongly contributes to total cristobalite content in a given flow facies. Our findings provide a new field context in which to address questions that have arisen from the study of cristobalite in dome eruptions, with insight afforded by the fundamentally different emplacement geometries of flows and domes.  相似文献   
997.
Phosphorus (P) loss from agricultural watersheds has long been a critical water quality problem, the control of which has been the focus of considerable research and investment. Preventing P loss depends on accurately representing the hydrological and chemical processes governing P mobilization and transport. The Soil and Water Assessment Tool (SWAT) is a watershed model commonly used to predict run‐off and non‐point source pollution transport. SWAT simulates run‐off employing either the curve number (CN) or the Green and Ampt methods, both assume infiltration‐excess run‐off, although shallow soils underlain by a restricting layer commonly generate saturation‐excess run‐off from variable source areas (VSA). In this study, we compared traditional SWAT with a re‐conceptualized version, SWAT‐VSA, that represents VSA hydrology, in a complex agricultural watershed in east central Pennsylvania. The objectives of this research were to provide further evidence of SWAT‐VSA's integrated and distributed predictive capabilities against measured surface run‐off and stream P loads and to highlight the model's ability to drive sub‐field management of P. Thus, we relied on a detailed field management database to parameterize the models. SWAT and SWAT‐VSA predicted discharge similarly well (daily Nash–Sutcliffe efficiencies of 0.61 and 0.66, respectively), but SWAT‐VSA outperformed SWAT in predicting P export from the watershed. SWAT estimated lower P loss (0.0–0.25 kg ha?1) from agricultural fields than SWAT‐VSA (0.0–1.0+ kg ha?1), which also identified critical source areas – those areas generating large run‐off and P losses at the sub‐field level. These results support the use of SWAT‐VSA in predicting watershed‐scale P losses and identifying critical source areas of P loss in landscapes with VSA hydrology. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
998.
999.
This paper reviews the role of alluvial soils in vegetated gravelly river braid plains. When considering decadal timescales of river evolution, we argue that it becomes vital to consider soil development as an emergent property of the developing ecosystem. Soil processes have been relatively overlooked in accounts of the interactions between braided river processes and vegetation, although soils have been observed on vegetated fluvial landforms. We hypothesize that soil development plays a major role in the transition (speed and pathway) from a fresh sediment deposit to a vegetated soil‐covered landform. Disturbance (erosion and/or deposition), vertical sediment structure (process history), vegetation succession, biological activity and water table fluctuation are seen as the main controls on early alluvial soil evolution. Erosion and deposition processes may not only act as soil disturbing agents, but also as suppliers of ecosystem resources, because of their role in delivering and changing access (e.g. through avulsion) to fluxes of water, fine sediments and organic matter. In turn, the associated initial ecosystem may influence further fluvial landform development, such as through the trapping of fine‐grained sediments (e.g. sand) by the engineering action of vegetation and the deposit stabilization by the developing aboveground and belowground biomass. This may create a strong feedback between geomorphological processes, vegetation succession and soil evolution which we summarize in a conceptual model. We illustrate this model by an example from the Allondon River (Switzerland) and identify the research questions that follow. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
1000.
Amorphous silica (ASi) carried in suspension by rivers is an important component in the global Si budget. Water erosion processes in cultivated catchments are likely to drive ASi delivery to the river system. However, no studies have investigated the controls on ASi mobilization by erosional processes in croplands. Rainfall experiments were performed on split fields (i.e. a part conventionally ploughed and a part under reduced tillage) to simulate ASi mobilization by inter‐rill erosion in croplands, and identify its dependency on soil, field and rainfall characteristics. The ASi content of the soil and the inter‐rill erosion rate were determined as the major controls on ASi mobilization. Variables such as tillage technique and crop type did not have a consistent direct or indirect effect. Inter‐rill erosion is clearly selective with respect to ASi, indicating association of ASi with the fine soil fraction and with soil organic carbon. Our experiments demonstrate that erosion increases due to human perturbation will increase the delivery of reactive Si to aquatic systems. We estimate that globally, c. 7% of all reactive Si that enters aquatic systems is derived from erosion of agricultural soils. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号