首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   322篇
  免费   9篇
  国内免费   3篇
测绘学   4篇
大气科学   20篇
地球物理   59篇
地质学   173篇
海洋学   8篇
天文学   55篇
自然地理   15篇
  2020年   3篇
  2018年   6篇
  2017年   7篇
  2015年   5篇
  2014年   5篇
  2013年   16篇
  2012年   7篇
  2011年   13篇
  2010年   26篇
  2009年   9篇
  2008年   14篇
  2007年   16篇
  2006年   13篇
  2005年   10篇
  2004年   7篇
  2003年   7篇
  2002年   8篇
  2001年   6篇
  2000年   9篇
  1999年   3篇
  1998年   5篇
  1997年   5篇
  1996年   4篇
  1995年   8篇
  1994年   8篇
  1993年   7篇
  1992年   4篇
  1990年   3篇
  1989年   3篇
  1987年   2篇
  1986年   2篇
  1984年   3篇
  1982年   3篇
  1979年   8篇
  1978年   7篇
  1977年   2篇
  1973年   3篇
  1971年   2篇
  1970年   4篇
  1969年   2篇
  1966年   2篇
  1965年   2篇
  1962年   4篇
  1960年   2篇
  1955年   2篇
  1954年   2篇
  1953年   2篇
  1948年   5篇
  1931年   2篇
  1921年   2篇
排序方式: 共有334条查询结果,搜索用时 31 毫秒
21.
Zusammenfassung Grundzüge des Bodenreliefs und geophysikalisch-geotektonische Kenntnisse im Bereiche des Indischen Ozeans ermöglichen es, Art und Reihenfolge seiner Entwicklung zu skizzieren. Eine erste, parallel den Breitengraden während der Alttrias-Zeit aufgerissene Tiefspaltenzone unter dem Riesenkontinent Gondwanaland trennte die Antarktis von Südamerika-Afrika-Indien-Australien. Durch Querdehnung der Spalten drangen gewaltige basaltische Magmamassen empor. Sie erweiterten wie in Island die aufklaffenden Brüche und drängten die Kontinente auseinander, so daß die vier genannten Großschollen bis über die heutige Lage des 50.° Süd nordwärts verlagert wurden. Hinter ihnen blieb ihre alte, basische und vulkanisch tätige Unterlage zurück als erster Südteil des Indischen Neu-Ozeans. Unregelmäßige Hemmungen bei der Norddrift der Teilschollen dürften zwischen diesen méridionale Blattspalten erzwungen haben.Deren östlichste trennte zunächst jungtriassisch Australien ab von Indien und den anderen westlichen Kontinentalschollen. Diese méridionale Blattspalte wurde zu einer mittelozeanischen Schwelle und drängte einerseits Australien an seinen Platz gegen Osten, andererseits Indien zusammen mit Lemurien gegen Westen. Dann riß die Carlsberg-Mittelindische Schwelle auf und rückte Lemurien westwärts, Indien ostwärts bis zum 90.° Ost. Von der Mittelkreidezeit an wurde die Indische Scholle gegen Norden bis vor den Himalaya verlagert. Sie kam in der Oberkreidezeit an.Dies bewirkte keine neue Mittelozeanische Spaltenschwelle mehr. Vielmehr hatte sich eine regional das gesamte Untergrundsgebiet des Indischen Ozeans erfassende Unterströmung gegen Norden entwickelt. Sie floß unter Himalaya und Tibet noch weiter gegen N und E, wo sie das bekannte Dach der Erde im Tertiär emporstemmte.Die möglichen Begründungen enthält der nachfolgende Text.
It is possible to reconstruct the nature and sequence of development of the Indian Ocean through knowledge of the topology and through geophysical-geotectonic research.The first deep fault zone situated under the great continent Gondwanaland, went parallel to the latitude during the lower Triassic Period and separated the Antarctic from South America, Africa, India and Australia. The basaltic magma was pushed up through the transverse expansion of the crevices. The opened cracks were widened like in Iceland and presed the continents apart. In this way the 4 great continents mentioned above, were pushed northwards farther than the 50° lat. S of today. Behind them remained the old, basic, and volcanicaly active foundation as the first southern floor of the Indian Ocean. Irregular retardations during the northern drift of parts of the continents probably had caused meridial fissures (Blatt-Spalten).The eastern most part of the fissures first divided in the Upper Triassic Period Australia from India and the other western continental blocks. These meridial fissures grew to a middle ocean rise and pushed on one side Australia to the east, and on the other side India together with Lemur to the west.The Carlsberg-Middle-Ocean Rise then shoved Lemur westward and India eastward to 90° E. Beginning in the Middle Cretaceous Period, the Indian block moved to the north and reached the Himalayas in the Upper Cretaceous Period. This did not cause any new middle ocean Spaltenschwelle. On the contrary, in the underground region of the Indian Ocean an underflow to the north had developed. It flowed under the Himalaya and Tibet and even more to the north and east where the famous roof of the Earth originated.The possible reasons are given in the following text.

Résumé Le relief du fond de la mer et des faits géophysicaux et géotectoniques dans la région de l'Océan Indien rendent possible d'esquisser la façon de laquelle cet Océan s'est formé. Une zone primaire de fissures profondes formée pendant le Trias inférieur et située parallèle aux degrés de latitude au-dessous du continent gigantesque Gondwanaland séparait la région antarctique d'une part et l'Amérique du Sud, l'Afrique, les Indes et l'Australie d'autre part. A la suite d'une expansion de fissures d'énormes masses basaltiques se levèrent. Celles-ci élargirent les fentes, comme en Islande, et renforcèrent la séparation des continents. C'est pourquoi les quatre boucliers cités furent poussés au-delà de 50° degré de latitude vers le Nord. Leur soubassement basique et volcanique restait à sa place et formait la première partie méridionale du nouvel Océan Indien. Des obstacles irréguliers freinèrent le mouvement vers le Nord des divers boucliers, ce qui peut avoir causé les décrochements parallèles aux méridians.Le décrochement le plus oriental séparait d'abord, au Trias supérieur, l'Australie des Indes et des autres boucliers continentaux à l'Ouest. Le linéament décroché se transforma en un seuil au milieu de l'Océan et poussa d'une part l'Australie vers sa place orientale, d'autre part les Indes avec la Lémurie vers l'Ouest. Puis le linéament Carlsberg au milieu de l'Océan Indien s'ouvrit et transporta la Lémurie vers l'Ouest, les Indes vers l'Est. Dès le Crétacé moyen le bouclier indien a été transporté vers le Nord jusqu'au Himalaya. Il y arriva pendant le Crétacé supérieur.Ceci ne causa plus une nouvelle élévation au milieu de l'Océan. Plutôt il s'était produit une subfluence générale dirigée vers le Nord et emportant le soussol entier de l'Océan Indien. Cette subfluence se prolongea au-dessous de l'Himalaya et du Tibet vers le NE, soulevant au Tertiaire le célèbre Toit de la Terre.Dans la suite les raisons de cette opinion seront exposées.

. , . . .
  相似文献   
22.
Zusammenfassung Es wird über Registrierungen der langwelligen Gegenstrahlung berichtet, die von März bis Oktober 1953 tags und nachts in Frankfurt durchgeführt wurden. Bei der Bearbeitung des Materials wurden erstmalig die gemessenen stündlichen Summenwerte und keine Einzelwerte zugrundegelegt, wodurch die hier gefundenen Beziehungen für Berechnungen der Gegenstrahlung grössere Allgemeingültigkeit haben. Die langwellige Strahlung ist fast doppelt so gross wie die kurzwellige Sonnen- und Himmelsstrahlung auf die Horizontalfläche. Die gemessenen Werte der Gegenstrahlung stimmen im grossen Mittel mit den nach derFeussner-schen Formel berechneten gut überein, doch sind die einzelnen Abweichungen davon sehr gross. Wie schon von anderen Autoren wurde auch hier festgestellt, dass die Gegenstrahlung mit zunehmender Bewölkung quadratisch zunimmt, allein bei tiefer Bewölkung ist tagsüber ein annähernd linearer Zusammenhang vorhanden. Negative Effektivstrahlung ist weit häufiger, als bisher angenommen, jedoch kommt sie fast nur in den Vormittagsstunden vor. Bei dichter niedriger Bewölkung ist der Wärmestrom nach Sonnenaufgang daher von oben nach unten gerichtet. Die Gegenstrahlung lässt sich hinreichend gut berechnen, wenn man dieFeussnersche Formel, Mittelwerte der Temperatur, des Dampfdruckes, der Bewölkungsstärke und die hier gefundene Bewölkungs-Beziehung zugrundelegt.
Summary From March to Oct. 1953, the atmospheric long wave radiation has been recorded in Frankfurt during day and night time. For evaluating the records, no instantaneous values were taken, but the hourly sums, so that the relations found can more generally be used for computations. The atmospheric long wave radiation is almoust twice as strong as the short wave radiation from sun and sky on a horizontal plane. The mean measured values of the atmospheric long wave radiation coincide well with theFeussners formula. However, the deviations of the single values are very large. Confirming the results of other authors, it has been found that the atmospheric long wave radiation increases with the second power of the cloudiness, only with low clouds in daytime the increase is approximatly linear. Negative values of the effektive radiation occurs more frequently than expected uptil to day, but only in the time before noon. So with a dense low cloud cover the flow of heat after sunrise is directed downward. The atmospheric long wave radiation may satisfactorily be computed, ifFeussners formula, mean values of temperature, vapour pressure, cloudiness, and the mentioned cloudiness relation are taken.
  相似文献   
23.
Zusammenfassung Das beschriebene Registrierpyrgeometer hat sich als Ergebnis längerer Versuche zum Bau eines Strablungsmessinstrumentes für die langwellige Gegenstrahlung in der Praxis bewährt. Als Strahlungsempfänger dient eine mit Magnesiumoxyd geweisste Thermosäule, um die tagsüber vorhandene kurzwellige Strahlung auszuschalten. Als Windschutz wird eine Filterplatte aus KRS 5 verwendet, welche zur besseren Erfüllung des cos-Gesetzes die Form einer Zerstreuungslinse besitzt. Die Registrierung erfolgt fortlaufend seit Anfang März dieses Jahres mittels Punktschreibers bei jedem Wetter sowohl bei Tage als auch bei Nacht und wird über einen längeren Zeitraum weitergeführt werden. Die Apparatur ist absolut geeicht und an einigen Registrierbeispielen werden die Vor- und Nachteile derselben beschrieben.
Summary On the basis of experimental investigations a recording pyrgeometer for measuring the long wave radiation of the atmosphere has been built which is in successful practical use since some months. The radiation is received by a thermopile whitened with magnesium oxyde to reflect the short wave radiation during the daytime. Wind is shielded off by a filter of «KRS 5», ground in the shape of a diffracting lens in order to better comply with the cosine law. Recording is going on continously with a dotted line recorder since March 1953, independant of weather conditions and day or night time, and is intended to be continued for a longer period. The complete measuring apparatus is calibrated absolutely in cal/cm2 min. Some sample records are shown in this paper, and the qualities of the instrument are discussed.
  相似文献   
24.
A soil–vegetation–atmosphere transfer model (SVAT), interactions between the soil–biosphere–atmosphere (ISBA) of Météo France, is modified and applied to the Athabasca River Basin (ARB) to model its water and energy fluxes. Two meteorological datasets are used: the archived forecasts from the Meteorological Survey of Canada’s Global Environmental Multiscale Model (GEM) and the European Centre for Mid-range Weather Forecasts global re-analysis (ERA-40), representing spatial scales typical of a weather forecasting model and a global circulation model (GCM), respectively. The original treatment of soil moisture and rainfall in ISBA (OISBA) is modified to statistically account for sub-grid heterogeneity of soil moisture and rainfall to produce new, highly non-linear formulations for surface and sub-surface runoff (MISBA). These new formulations can be readily applied to most existing SVATs. Stand alone mode simulations using the GEM data demonstrate that MISBA significantly improves streamflow predictions despite requiring two fewer parameters than OISBA. Simulations using the ERA-40 data show that it is possible to reproduce the annual variation in monthly, mean annual, and annual minimum flows at GCM scales without using downscaling techniques. Finally, simulations using a simple downscaling scheme show that the better performance of higher resolution datasets can be primarily attributed to improved representation of local variation of land cover, topography, and climate.  相似文献   
25.
The present paper describes the analysis and modeling of the South China Sea (SCS) temperature cycle on a seasonal scale. It investigates the possibility to model this cycle in a consistent way while not taking into account tidal forcing and associated tidal mixing and exchange. This is motivated by the possibility to significantly increase the model’s computational efficiency when neglecting tides. The goal is to develop a flexible and efficient tool for seasonal scenario analysis and to generate transport boundary forcing for local models. Given the significant spatial extent of the SCS basin and the focus on seasonal time scales, synoptic remote sensing is an ideal tool in this analysis. Remote sensing is used to assess the seasonal temperature cycle to identify the relevant driving forces and is a valuable source of input data for modeling. Model simulations are performed using a three-dimensional baroclinic-reduced depth model, driven by monthly mean sea surface anomaly boundary forcing, monthly mean lateral temperature, and salinity forcing obtained from the World Ocean Atlas 2001 climatology, six hourly meteorological forcing from the European Center for Medium range Weather Forecasting ERA-40 dataset, and remotely sensed sea surface temperature (SST) data. A sensitivity analysis of model forcing and coefficients is performed. The model results are quantitatively assessed against climatological temperature profiles using a goodness-of-fit norm. In the deep regions, the model results are in good agreement with this validation data. In the shallow regions, discrepancies are found. To improve the agreement there, we apply a SST nudging method at the free water surface. This considerably improves the model’s vertical temperature representation in the shallow regions. Based on the model validation against climatological in situ and SST data, we conclude that the seasonal temperature cycle for the deep SCS basin can be represented to a good degree. For shallow regions, the absence of tidal mixing and exchange has a clear impact on the model’s temperature representation. This effect on the large-scale temperature cycle can be compensated to a good degree by SST nudging for diagnostic applications.  相似文献   
26.
A new complex earth system model consisting of an atmospheric general circulation model, an ocean general circulation model, a three-dimensional ice sheet model, a marine biogeochemistry model, and a dynamic vegetation model was used to study the long-term response to anthropogenic carbon emissions. The prescribed emissions follow estimates of past emissions for the period 1751–2000 and standard IPCC emission scenarios up to the year 2100. After 2100, an exponential decrease of the emissions was assumed. For each of the scenarios, a small ensemble of simulations was carried out. The North Atlantic overturning collapsed in the high emission scenario (A2) simulations. In the low emission scenario (B1), only a temporary weakening of the deep water formation in the North Atlantic is predicted. The moderate emission scenario (A1B) brings the system close to its bifurcation point, with three out of five runs leading to a collapsed North Atlantic overturning circulation. The atmospheric moisture transport predominantly contributes to the collapse of the deep water formation. In the simulations with collapsed deep water formation in the North Atlantic a substantial cooling over parts of the North Atlantic is simulated. Anthropogenic climate change substantially reduces the ability of land and ocean to sequester anthropogenic carbon. The simulated effect of a collapse of the deep water formation in the North Atlantic on the atmospheric CO2 concentration turned out to be relatively small. The volume of the Greenland ice sheet is reduced, but its contribution to global mean sea level is almost counterbalanced by the growth of the Antarctic ice sheet due to enhanced snowfall. The modifications of the high latitude freshwater input due to the simulated changes in mass balance of the ice sheet are one order of magnitude smaller than the changes due to atmospheric moisture transport. After the year 3000, the global mean surface temperature is predicted to be almost constant due to the compensating effects of decreasing atmospheric CO2 concentrations due to oceanic uptake and delayed response to increasing atmospheric CO2 concentrations before.  相似文献   
27.
Fluid inclusions in garnet, kyanite and quartz from microdiamond-bearing granulites in the Western Gneiss Region, Norway, document a conspicuous fluid evolution as the rocks were exhumed following Caledonian high- and ultrahigh-pressure (HP–UHP) metamorphism. The most important of the various fluid mixtures and daughter minerals in these rocks are: (N2 + CO2 + magnesian calcite), (N2 + CO2 + CH4 + graphite + magnesian calcite), (N2 + CH4), (N2 + CH4 + H2O), (CO2) and (H2O + NaCl + CaCl2 + nahcolite). Rutile also occurs in the N2 + CO2 inclusions as a product of titanium diffusion from the garnet host into the fluid inclusions. Volatiles composed of N2 + CO2 + magnesian calcite characterise the ambient metamorphic environment between HP–UHP (peak) and early retrograde metamorphism. During progressive decompression, the mole fraction of N2 increased in the fluid mixtures; as amphibolite-facies conditions were reached, CH4 and later, H2O, appeared in the fluids, concomitant with the disappearance of CO2 and magnesian calcite. Graphite is ubiquitous in the host lithologies and fluid inclusions. Thermodynamic modelling of the metamorphic volatiles in a graphite-buffered C-O-H system demonstrates that the observed metamorphic volatile evolution was attainable only if the f O2 increased from c. −3.5 (±0.3) to −0.8 (±0.3) log units relative to the FMQ oxygen buffer. External introduction of oxidising aqueous solutions along a system of interconnected ductile shear zones adequately explains the dramatic increase in the f O2. The oxidising fluids introduced during exhumation were likely derived from dehydration of oceanic crust and continental sediments previously subducted during an extended period of continental collision in conjunction with the Caledonian orogeny. Received: 15 December 1997 / Accepted: 25 May 1998  相似文献   
28.
29.
30.
The Serranía de Ronda (western Betic Cordilleras, S-Spain) is formed by different tectonic units of the Betic internal domain. Stratigraphic correlations of the Permo-Triassic and Triassic sedimentary sequences imply that one part of the Mesozoic carbonates of the Rondaides (Dorsale bétique), namely the Cabrilla unit (Dorsale interne), is shearedoff from the frontal part of the Malaguides, and another part (Nieves unit, Dorsale externe) forms the Mesozoic cover of the alpujarride Casares unit. The first alpine compressional phases took place in the Paleogene; post-metamorphic movements followed in the time between the Upper Aquitanian and the Upper Tortonian. From geometrical considerations it can be concluded that the Malaguides originated paleogeographically from a more internal region than the Alpujarrides.
Zusammenfassung Am Aufbau der Serranía de Ronda (westliche Betische Kordilleren, S-Spanien) nehmen verschiedene Einheiten der betischen Intemzonen teil. Stratigraphische Vergleiche der permotriadischen und triadischen Sedimentserien erlauben den Schluß, daß die mesozoischen Karbonate der Rondaiden (Dorsale bétique) zu einem Teil (Cabrilla-Einheit, Dorsale interne) von der frontalen Partie der Malagiden abglitten und zum anderen Teil (Nieves-Einheit, Dorsale externe) das abgescherte Mesozoikum der alpujarriden Casares-Einheit bilden. Die ersten alpinen Kompressionsphasen sind im Paleogen anzusetzen, da für mesozoische Deckenbewegungen beweiskräftige Argumente fehlen. Zwischen Oberaquitanian und Obertortonian fanden post-metamorphe Überschiebungen statt. Aus geometrischen Gründen wird angenommen, daß die Malagiden paläogeographisch internerer Herkunft sein müssen als die benachbarten Alpujarriden.

Resumen La Serranía de Ronda (Cordilleras béticas occidentales, Prov. Málaga) está formado por diferentes unidades del conjunto bético interno. Correlaciones estratigráficas del Permo-Triásico y del Triásico de los diferentes unidades permiten la conclusión que los Rondáides (Dorsal bética) está por una parte (unidad de Cabrilla, Dorsal interna) el revestimiento mesozóico de la parte frontal de los mantos maláguides, y por otra parte (unidad de las Nievas, Dorsal externa) la parte mesozóica de la unidad alpujárride de Casares. Las primeras fases alpinas de compresión deben ser situadas en el Paleógeno. Las traslaciones post-metamórficas de mantos son de edad aquitaniense superior hasta pre-tortoniense superior. Con argumentación geométrica se puede concluir que los Maláguides son de un orígen paleográfico más interno que los Alpujárrides.

( , . « » , (Dorsale bétique) ( , Dorsale interne) , ( , Dorsale externe) . .. , . - . , , .
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号