首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   8篇
  国内免费   4篇
测绘学   7篇
大气科学   6篇
地球物理   35篇
地质学   31篇
海洋学   8篇
天文学   9篇
自然地理   5篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   5篇
  2017年   4篇
  2016年   8篇
  2015年   3篇
  2014年   5篇
  2013年   5篇
  2012年   6篇
  2011年   4篇
  2010年   9篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2000年   4篇
  1998年   3篇
  1997年   1篇
  1996年   4篇
  1990年   3篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1982年   2篇
  1974年   1篇
  1970年   1篇
  1942年   1篇
排序方式: 共有101条查询结果,搜索用时 140 毫秒
61.
Earthquakes are generally clustered, both in time and space. Conventionally, each cluster is made of foreshocks, the mainshock, and aftershocks. Seismic damage can possibly accumulate because of the effects of multiple earthquakes in one cluster and/or because the structure is unrepaired between different clusters. Typically, the performance-based earthquake engineering (PBEE) framework neglects seismic damage accumulation. This is because (i) probabilistic seismic hazard analysis (PSHA) only refers to mainshocks and (ii) classical fragility curves represent the failure probability in one event, of given intensity, only. However, for life cycle assessment, it can be necessary to account for the build-up of seismic losses because of damage in multiple events. It has been already demonstrated that a Markovian model (i.e., a Markov chain), accounting for damage accumulation in multiple mainshocks, can be calibrated by maintaining PSHA from the classical PBEE framework and replacing structural fragility with a set of state-dependent fragility curves. In fact, the Markov chain also works when damage accumulates in multiple aftershocks from a single mainshock of known magnitude and location, if aftershock PSHA replaces classical PSHA. Herein, this model is extended further, developing a Markovian model that accounts, at the same time, for damage accumulation: (i) within any mainshock–aftershock seismic sequence and (ii) among multiple sequences. The model is illustrated through applications to a series of six-story reinforced concrete moment-resisting frame buildings designed for three sites with different seismic hazard levels in Italy. The time-variant reliability assessment results are compared with the classical PBEE approach and the accumulation model that only considers mainshocks, so as to address the relevance of aftershocks for life cycle assessment.  相似文献   
62.
Earthquakes damage engineering structures near, relatively to the rupture's size, to the source. In this region, the fault's dynamics affect ground motion propagation differently from site to site, resulting in systematic spatial variability known as directivity. Although a number of researches recommend that records with directivity‐related velocity pulses should be explicitly taken into account when defining design seismic action on structures, probabilistic seismic hazard analysis (PSHA), in its standard version, seems inadequate for the scope. In the study, it is critically reviewed why, from the structural engineering point of view, hazard assessment should account for near‐source effects (i.e., pulse‐like ground motions), and how this can be carried out adjusting PSHA analytically via introduction of specific terms and empirically calibrated models. Disaggregation analysis and design scenarios for near‐source PSHA are also formulated. The analytical procedures are then applied to develop examples of hazard estimates for sites close to strike–slip or dip–slip faults and to address differences with respect to the ordinary case, that is, when pulse‐like effects are not explicitly accounted for. Significant increase of hazard for selected spectral ordinates is found in all investigated cases; increments depend on the fault‐site configuration. Moreover, to address design scenarios for seismic actions on structures, disaggregation results are also discussed, along with limitations of current design spectra to highlight the pulse‐like effects of structural interest. Finally, an attempt to overcome these, by means of disaggregation‐based scenarios specific for the pulse occurrence case, is presented. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
63.
A new mixed displacement‐pressure element for solving solid–pore fluid interaction problems is presented. In the resulting coupled system of equations, the balance of momentum equation remains unaltered, while the mass balance equation for the pore fluid is stabilized with the inclusion of higher‐order terms multiplied by arbitrary dimensions in space, following the finite calculus (FIC) procedure. The stabilized FIC‐FEM formulation can be applied to any kind of interpolation for the displacements and the pressure, but in this work, we have used linear elements of equal order interpolation for both set of unknowns. Examples in 2D and 3D are presented to illustrate the accuracy of the stabilized formulation for solid–pore fluid interaction problems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
64.
To define reference structural actions, engineers practicing earthquake resistant design are required by codes to account for ground motion likely to threaten the site of interest and also for pertinent seismic source features. In most of the cases, while the former issue is addressed assigning a mandatory design response spectrum, the latter is left unsolved. However, in the case that the design spectrum is derived from probabilistic seismic hazard analysis, disaggregation may be helpful, allowing to identify the earthquakes having the largest contribution to the hazard for the spectral ordinates of interest. Such information may also be useful to engineers in better defining the design scenario for the structure, e.g., in record selection for nonlinear seismic structural analysis. On the other hand, disaggregation results change with the spectral ordinate and return period, and more than a single event may dominate the hazard, especially if multiple sources affect the hazard at the site. This work discusses identification of engineering design earthquakes referring, as an example, to the Italian case. The considered hazard refers to the exceedance of peak ground acceleration and 1s spectral acceleration with four return periods between 50 and 2475 year. It is discussed how, for most of the Italian sites, more than a design earthquake exists, because of the modeling of seismic sources. Furthermore, it is explained how and why these change with the limit state and the dynamic properties of the structure. Finally, it is illustrated how these concepts may be easily included in engineering practice complementing design hazard maps and effectively enhancing definition of design seismic actions with relatively small effort.  相似文献   
65.
Orientation and distribution of fractures in the Oligocene–Early Miocene Asmari Formation (a major reservoir rock of the Zagros petroleum system) were investigated in two anticlines of the Zagros fold-and-thrust belt. The Sim and Kuh-e-Asmari anticlines developed in the areas of the Zagros characterized by the occurrence and absence of Cambrian evaporites at the bottom of the stratigraphic pile, respectively. The aim was to outline major differences in terms of fracture spacing and saturation. Organic matter maturity and clay minerals-based geothermometers suggest that the depth of deformation for the top of the Asmari Formation in the Kuh-e-Asmari anticline was in the range of 1.5–2.7 km assuming a geothermal gradient of 22.5 °C/km. The Asmari Formation in the Sim anticline probably experienced a slightly deeper sedimentary burial (maximum 3 km) with a geothermal gradient of 20 °C/km. The spacing of fractures is generally 2–3 times larger (i.e., strain accommodated by fracturing is smaller) in the Sim anticline than in the Kuh-e-Asmari anticline. This is consistent with regional geological studies, analogue, and numerical models that suggest that thrust faults geometry and related folds are markedly different in the absence or presence of a weak decòllement (evaporites). The larger spacing in the Sim anticline is also consistent with higher temperature predicted for the Asmari Formation in this area. By contrast, the orientation of fractures with respect to the fold axes is the same in both anticlines. The fracture systems are rather immature in both anticlines. The amount and density of fractures in the twofolds are controlled by regional (occurrence/absence of salt and probably different burial), rather than local features (fold geometry).  相似文献   
66.
67.
The possibility of a net rotation of the lithosphere with respect to the mantle is generally overlooked since it depends on the adopted mantle reference frames,which are arbitrary.We review the geological and geophysical signatures of plate boundaries,and show that they are markedly asymmetric worldwide.Then we compare available reference frames of plate motions relative to the mantle and discuss which is at best able to fit global tectonic data.Different assumptions about the depths of hotspot sources(below or within the asthenosphere,which decouples the lithosphere from the deep mantle) predict different rates of net rotation of the lithosphere relative to the mantle.The widely used no-net-rotation(NNR) reference frame,and low(0.2°-0.4° /Ma) net rotation rates(deep hotspots source) predict an average net rotation in which some plates move eastward relative to the mantle(e.g.,Nazca).With fast(1° /Ma) net rotation(shallow hotspots source),all plates,albeit at different velocity,move westerly along a curved trajectory,with a tectonic equator tilted about 30° relative to the geographic equator.This is consistent with the observed global tectonic asymmetries.  相似文献   
68.
Foreland basins are flat elongated areas occurring along subduction and collision zones worldwide. We show that, in such basins, subsidence can be induced by earthquakes generated along bordering thrust faults due to coseismic displacement, postseismic displacement and liquefaction-induced compaction.As an example, the potential effects of earthquakes on the subsidence of Venice, which is located in the Po Plain foreland basin, are discussed. It is generally assumed that natural subsidence of Venice is continuous and that subsidence rates are rather constant through time. However, catastrophic pulses of subsidence cannot be ruled out as taught by the sudden disappearance of the island of Malamocco at the beginning of the XII century.The results of numerical models specifically run suggest that the risk of subsidence accelerations in Venice due to coseismic displacements is negligible. Modelling results from literature suggest that postseismic subsidence could be of the order of 1 cm. Although the effects of a single event should be improbably detectable, such a subsidence is not a priori negligible considering the number of seismogenic sources located within 100 km from the town.Historical sources are utilized to discuss the feasibility of liquefaction-induced subsidence in Venice. It is shown that the destruction and sinking of ancient Malamocco is roughly coincident with a strong earthquake cycle that was associated to phenomena that can be explained with liquefaction of sandy layers. Although the historical documents do not permit to establish a clear causal link between the earthquake and land subsidence, it is concluded that liquefaction-induced subsidence cannot be ruled out as a potential source for local subsidence acceleration.  相似文献   
69.
70.
The exceptional occurrence of fluorine-rich mineral phases in the benmoreitic lava dome of Mt. Calvario (south-western flank of Mt. Etna) has given the opportunity to understand the genetic process allowing their crystallization. Both primary and secondary mineral associations were found, namely: plagioclase, clinopyroxene, olivine, fluorapatite and iron oxides as primary assemblage, whereas fluoro-edenite and fluorophlogopite, ferroan-enstatite, hematite, pseudobrookite and tridymite as secondary mineralization. In addition to some major and trace elements (e.g., Fe, Ti, Na, K, P, Ba, Rb, Sm, Zr), particularly fluorine and chlorine concentrations of the whole rock are significantly higher than other Etnean prehistoric benmoreites, and cannot be accounted for common differentiation processes in the feeding system. The selective enrichment in some elements has been here attributed to volatile flushing occurring in the plumbing system, with fluid/melt ratio of ~0.65:1. The resulting high amount of fluorine, coupled with its high solubility even at low pressure for benmoreitic melts, finally led to nucleation and growth of F-rich mineral phases during syn- and post-eruptive conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号