首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24474篇
  免费   176篇
  国内免费   920篇
测绘学   1410篇
大气科学   1984篇
地球物理   4516篇
地质学   11618篇
海洋学   1004篇
天文学   1656篇
综合类   2162篇
自然地理   1220篇
  2022年   3篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   4763篇
  2017年   4039篇
  2016年   2584篇
  2015年   237篇
  2014年   86篇
  2013年   29篇
  2012年   990篇
  2011年   2732篇
  2010年   2018篇
  2009年   2315篇
  2008年   1890篇
  2007年   2363篇
  2006年   54篇
  2005年   200篇
  2004年   405篇
  2003年   411篇
  2002年   250篇
  2001年   51篇
  2000年   52篇
  1999年   14篇
  1998年   23篇
  1997年   1篇
  1993年   2篇
  1992年   1篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1981年   21篇
  1980年   19篇
  1976年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
291.
1IntroductionTheHongshijinggolddepositislocatedinthenorthofLuobupouLakeofRuoqiang ,about 30 0kmsouthwestofHamiCity ,Xinjiang .ItwasdiscoveredbytheSixthGeologicalTeamofXinjiangduringgeo chemicalexploration .TheHongshijinggolddeposit,whichoccursinthegold bearingformationcomposedofMiddleandLateCarboniferousvolcanicandpyroclasticrocks ,isabrittle ductileshearzonetypegolddepositcontrolledbyariftbelt.TheHongshijinggolddepositislocatedinthesouthwestoftheHongshi jing -Maotoushanmineralizationb…  相似文献   
292.
Gneiss-distilled water interaction at room temperature was investigated with batch-reactors to study water-rock reaction and geochemical evolution of the aqueous phase with time. The ion concentrations in water were controlled not only by the dissolution of primary minerals, but also by the precipitation of secondary minerals. The decreasing fraction sizes of gneiss could favor dissolution and precipitation simultaneously. Ca^2 and K^ were the major cations, and HCO3^- was the major anion in water. All the ions except Ca^2 increased in concentration with time. The Ca^2 release from the rock to the aqueous phase was initially much faster than the release of K^ , Na^2 and Mg^2 . But after about 5 - 24 hours, the Ca^2 concentrations in water decreased very slowly with time and became relatively stable. During the experiment, the water varied from the Ca-( K)-HCO3-type water to the K-Ca-HCO3-type water, and then to the K-(Ca, Na)-HCO3-type water. The water-gneiss interaction was dominated by the dissolution of Kfeldspar in the solution. The remaining secondary minerals were mainly kaolinite, illite and K (Mg) -mica.  相似文献   
293.
The most fundamental character of lunar soil is its high concentrations of solar-wind-implanted elements, and the concentrations and behavior of the noble gases He, Ne, Ar, and Xe, which provide unique and extensive information about a broad range of fundamental problems. In this paper, the authors studied the forming mechanism of lunar regolith, and proposed that most of the noble gases in lunar regolith come from the solar wind. Meteoroid bombardment controls the maturity of lunar soil, with the degree of maturation decreasing with grain size; the concentrations of the noble gases would be of slight variation with the depth of lunar soil but tend to decrease with grain size. In addition, the concentrations of noble gases in lunar soil also show a close relationship with its mineral and chemical compositions. The utilization prospects of the noble gas ^3He in lunar regolith will be further discussed.  相似文献   
294.
 Depth profiles of fluorescence at several excitation and emission wavelengths were measured along with CTD data during the cruise So119 of RV Sonne in the Arabian Sea from 12 May to 10 June 1997. In addition to chlorophyll fluorescence from phytoplankton in the near-surface layer, the profiles in the oxygen minimum region well below the euphotic zone show enhanced red fluorescence. Red fluorescence intensity is inversely related to the oxygen concentration in intermediate and deep waters. A relationship to characteristic water masses of the region cannot be found in the data, and this holds also with chemical data such as DOC. Absorbance spectra of water samples taken in the oxygen minimum zone show an absorption band at 420 nm wavelength with about 50 nm bandwidth, much weaker than gelbstoff absorbance in the same wavelength range. The absorption band remains stable after sample filtration with 0.45 μm glass fibre filters. Hence, the size of the absorbing matter is in the range of dissolved molecules or particles much smaller than 1 μm. Fluorescence spectra of unfiltered samples with 420 nm excitation show a weak emission band at 600 nm and a more pronounced one at 660 nm wavelength. The trailing edge of the 660 nm band falls into the range of chlorophyll emission, thus giving rise to the observed depth profiles of red fluorescence in the oxygen minimum zone. Red fluorescence measured on samples remain stable during a few hours after sampling even in the presence of oxygen. It is not detectable after several weeks of sample storage in the dark and cannot be reproduced even after depletion of dissolved oxygen. Received: 22 May 2002 / Accepted: 18 February 2003 Responsible Editor: Andreas Oschlies Acknowledgements. This work was supported by a grant from the Federal Minister of Education and Technology, Bonn, within the frame work of the JGOFS Arabian Sea program. We are grateful to the captain and the crew of RV Sonne for their support. We are indebted to Mrs. Kirsten Neumann from the Institute of Marine Chemistry and Biogeochemistry of the University of Hamburg for providing the oxygen data, and to Mr. Nikolai Delling from the same institute for making the DOC and chlorophyll data available to us.  相似文献   
295.
296.
A method of visualizing structures in closed chaotic flows out of homogenous particle distributions is presented in the example of models of a meandering jet. To this end, the system will be leaked or opened up by defining a region of the flow, so that a particle is considered to be escaped if it leaves this region. By applying this method to an ensemble of nonescaped tracers, we are able to characterize mixing processes by visualizing the converging and stretching filamentations (stable and unstable manifolds) in the flow without using additional mathematical tools. The possibility of applying the algorithm to analyze buoy data, and a comparison with the finite time manifolds are discussed.  相似文献   
297.
We obtain the preliminary result of crustal deformation velocity field for the Chinese continent by analyzing GPS data from the Crustal Motion Observation Network of China (CMONOC), particularly the data from the regional networks of CMONOC observed in 1999 and 2001. We delineate 9 technically active blocks and 2 broadly distributed deformation zones out of a dense GPS velocity field, and derive block motion Euler poles for the blocks and their relative motion rates. Our result reveals that there are 3 categories of deformation patterns in the Chinese continent. The first category, associated with the interior of the Tibetan Plateau and the Tianshan orogenic belt, shows broadly distributed deformation within the regions. The third category, associated with the Tarim Basin and the region east of the north-south seismic belt of China, shows block-like motion, with deformation accommodated along the block boundaries only. The second category, mainly associated with the borderland of the Tibetan Plateau, such as the Qaidam, Qilian, Xining (in eastern Qinghai), and the Diamond-shaped (in western Sichuan and Yunnan) blocks, has the deformation pattern between the first and the third, i.e. these regions appear to deform block-like, but with smaller sizes and less strength for the blocks. Based on the analysis of the lithospheric structures and the deformation patterns of the regions above, we come to the inference that the deformation modes of the Chinese continental crust are mainly controlled by the crustal structure. The crust of the eastern China and the Tarim Basin is mechanically strong, and its deformation takes the form of relative motion between rigid blocks. On the other hand, the northward indentation of the Indian plate into the Asia continent has created the uplift of the Tibetan Plateau and the Tianshan Mountains, thickened their crust, and raised the temperature in the crust. The lower crust thus has become ductile, evidenced in low seismic velocity and high electric conductivity observed. The brittle part of the crust, driven by the visco-plastic flow of the lower crust, deforms extensively at all scales. The regions of the second category located at the borderland of the Tibetan Plateau are at the transition zone between the regions of the first and the third categories in terms of the crustal structure. Driven by the lateral boundary forces, their deformation style is also between the two, in the form of block motion and deformation with smaller blocks and less internal strength.  相似文献   
298.
A numerical method of viscoelastic finite element coupled with spring-block model is developed to study temporal processes from the slow tectonic motion of large-scale crust to the rapid failure of small-scale faults. Our modeling demonstrates that the motion of crustal blocks is driven by forces from tectonic plate boundaries, and the deformation is distributed on faults for the stress accumulating. The coupling model generates earthquake sequences that display a magnitude-frequency scaling consistent with Gutenberg-Richter law. The frictional heterogeneities affeci earthquakes occurrence and stresses distribution of crustal blocks. Rupture of earthquakes starts at the nucleation node, and propagates bilaterally along faults with the stress triggering, release and redistribution. The failure of faults releases part of crustal stresses, the stress state of crustal blocks near fault is affected by the rupture of local segments on the fault, and the stress state of crustal blocks far away from the fault is controlled by the seismic activity of the whole fault.  相似文献   
299.
Using methods of discontinuous deformation analysis and finite element (DDA+FEM), this paper simulates dynamic processes of the Tangshan earthquake of 1976, which occurred in the northern North China where its internal blocks apparently interacted. Studies focus upon both the movement and deformation of the blocks, in particular, the Ordos block, and variations of stress states on the boundary faults. The Tangshan earthquake was composed of three events: slipping motions of NNE-striking major fault, NE-striking fault near the northeastern end of the NNE-striking fault, and NW-striking fault on the southeastern side of the NNE-striking fault. Compared with previous studies, our model yields a result that is more agreeable with the configuration of aftershock distributions. A number of data are presented, such as the principle stress field during the earthquake, contours of the maximum shear stress, the strike-slip deformation between blocks near the earthquake focus, time-dependent variations of slips of earthquake-triggered faulting, the maximum slip distance, and stress drops. These results are in accord with the earthquake source mechanism, basic parameters from earthquake wave study, macro-isoseismic line, observed horizontal displacement vectors, etc. The Tangshan earthquake exerted different influences on the adjacent blocks and boundary faults between them, thus resulting in differential movement and deformation. The Ordos block seems to have experienced the small-scale counterclockwise rotation and deformation, but its northeast part, bounded on the east by the Taihangshan and on the north by the Yanshan and Yinshan belts, underwent relatively stronger deformation. The Tangshan earthquake also changed the stress state of boundary faults of the North China, leading to an increase in shear stress and a decrease in normal stress in the NW-trending Zhangjiakou-Penglai fault through Tangshan City and the northern border faults of the Ordos block, and therefore raises the potential risk of earthquake occurrence. This result is supported by the facts that a series of Ms ≥ 6 earthquakes took place at the northern margin of the Ordos block after the Tangshan earthquake.  相似文献   
300.
The active North China block consists of three second-order blocks: Ordos, North China Plain, and East Shandong-Huanghai Sea blocks. Two active tectonic zones, the Anyang-Heze-Linyi and Tangshan-Cixian zones, exist in the active North China Plain block and have separated the active block into 3 third-order active blocks, Taihangshan, Hebei-Shandong, and Henan-Huai blocks. The 3 third-order active blocks are characterized by their entire motion and are clearly different in their Cenozoic structures and deep structures. The active boundary tectonic zones between the third-order active blocks are less than those between the first- and second-order active blocks in their movement strength, extent, and seismic activity. The density of M· ·6 earthquakes in the boundary zones between active blocks is higher than that within the blocks by 9–22 times in the North China region, up to one order of magnitude on average. M· · 7 earthquakes occurred basically in the boundary zones between active blocks. The difference is not occasional, but reflects the nature of intraplate movement and the characteristics of strong seismic activity and is the powerful evidence for hypothesis of active blocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号