首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   2篇
测绘学   1篇
大气科学   1篇
地球物理   1篇
地质学   30篇
天文学   3篇
自然地理   1篇
  2022年   1篇
  2018年   5篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1995年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
11.
12.
Landfills are one of the major sources of methane (CH4) emission which is a very potent greenhouse gas. The use of a natural process for microbial CH4 oxidation through biocovers provides a source reduction of CH4 emission. Previous studies have mostly focused on biochemical properties, and limited research has been conducted with regards to the geotechnical characterization of compost based biocovers. This paper presents the results of a comprehensive laboratory investigation on pure compost and compost–sand mixtures (with mix ratio of 3:1, 1:1, and 1:3 w/w) to determine the compaction, shear strength, compressibility, and hydraulic and thermal conductivity properties of compost based biocovers. Direct shear and ring shear tests have shown that the cohesion (c) and friction angle (?) are in the range of 2.1–19.7 kPa and 44.1°–54.7°, respectively. Based on the results of one dimensional consolidation tests, the coefficient of consolidation (Cv) values are in the range of 1.71–0.63 m2/year, which is a function of the moisture and organic contents of the samples. The lowest hydraulic conductivity ranges from 6.09 × 10?8 to 1.78 × 10?7 cm/s which occur at optimum moisture contents. Thermal conductivity is measured under various porosities and moisture contents. By increasing the dry density and sand content of the mixtures, thermal conductivity increases. The results presented in this paper will contribute to a better understanding of the geotechnical behaviour of compost based biocover, and thus to a more cost-effective design of biocovers.  相似文献   
13.
14.
Fluid inclusions approximated by the system H2O-CO2-NaCl are common in many geologic environments. In order to apply microthermometric data from these inclusions to infer P-T (pressure-temperature) trapping conditions, the composition of the inclusions, including the salinity, must be known. Normally, salinities of aqueous inclusions are determined from ice-melting temperatures obtained during microthermometry. However, when CO2-bearing aqueous fluid inclusions are cooled they often form a hydrate that incorporates H2O into the structure, and salinities estimated from ice-melting temperatures are therefore higher than the actual salinity. A technique that combines data from Raman spectroscopic and microthermometric analyses of individual inclusions was developed to determine the salinity of CO2-bearing aqueous inclusions based on measured clathrate melting temperatures and CO2 pressures obtained from Raman analyses. In this study, the pressure within inclusions was determined using Raman spectroscopy based on the splitting of the Fermi diad of CO2, measured at the clathrate melting temperature. The CO2 densities (and pressures) predicted by the equation developed in this study are in relatively good agreement with previously published equations, except for very low densities and correspondingly low pressures. The combined Raman spectroscopy - microthermometry technique thus provides both the temperature and the pressure in the inclusion at clathrate melting. For inclusions in which the clathrate melts in the presence of CO2 liquid, the salinity can be determined with a precision of a few tenths of a wt% NaCl, whereas for inclusions in which clathrate melts in the presence of CO2 vapor the salinity error may be a few wt% NaCl. Applying the method to synthetic fluid inclusions with known salinity suggests that the technique is valid for determining salinity of H2O-CO2-NaCl fluid inclusions in which clathrate melts in the presence of liquid CO2 only or vapor CO2 only.  相似文献   
15.
After placement of cemented tailings backfill (CTB), which is a mixture of tailings (man‐made soil), water, and binder, into underground mined‐out voids (stopes), the hydration reaction of the binder converts the capillary water into chemically bound water, which results in the reduction of the water content in the pores of the CTB, thereby causing a reduction in the pore‐water pressure in the CTB (self‐desiccation). Self‐desiccation has a significant impact on the pore‐water pressure and effective stress development in CTB and paramount and practical importance for the stability assessment and design of CTB structures and barricades. However, self‐desiccation in CTB structures is complex because it is a function of the multiphysics or coupled (i.e., thermal, hydraulic, mechanical, and chemical) processes that occur in CTB. To understand the self‐desiccation behavior of CTB, an integrated multiphysics model of self‐desiccation is developed in this study, which fully considers the coupled thermal, hydraulic, mechanical, and chemical processes and the consolidation process in CTB. All model coefficients are determined in measurable parameters. Moreover, the predictive ability of the model is verified with extensive case studies. A series of engineering issues are examined with the validated model to investigate the self‐desiccation process in CTB structures with respect to the changes in the mixture recipe, backfilling, and the surrounding rock and curing conditions. The obtained results provide in‐depth insight into the self‐desiccation behavior of CTB structures. The developed multiphysics model is therefore a potential tool for assessing and predicting self‐desiccation in CTB structures.  相似文献   
16.
Avai'o'vuna Swamp, a small coastal wetland in Vava'u, Kingdom of Tonga, produced a 4500-year pollen and sediment record. Results are: (1) a mid-Holocene sea level highstand is confirmed for Tonga between about 4500 and 2600 14C yr B.P.; marine clay contains pollen from mangroves (Rhizophora mangle), coastal forest trees (Barringtonia asiatica and Cocos nucifera), and rainforest trees (Alphitonia, Rhus, Hedycarya and Calophyllum). (2) Microscopic charcoal first appeared at 2600 14C yr B.P., coincident with the arrival of Polynesians. (3) Cocos, Pandanus, Excoecaria, Macaranga, and Elaeocarpaceae pollen reflects the establishment of a mixed coastal-lowland rainforest in the last 2500 years. (4) The loss of Hedycarya, Elaeocarpus, Calophyllum, and Guettarda and the reduction of Terminalia and taxa in the Papilionaceae family by about 1000 years ago may be due to habitat destruction and the loss of dispersal capabilities of some species through the extinction of the two largest pigeons in Tonga.  相似文献   
17.
Pollen taphonomy in a canyon stream   总被引:1,自引:0,他引:1  
Surface soil samples from the forested Chuska Mountains to the arid steppe of the Chinle Valley, Northeastern Arizona, show close correlation between modern pollen rain and vegetation. In contrast, modern alluvium is dominated by Pinus pollen throughout the canyon; it reflects neither the surrounding floodplain nor plateau vegetation. Pollen in surface soils is deposited by wind; pollen grains in alluvium are deposited by a stream as sedimentary particles. Clay-size particles correlate significantly with Pinus, Quercus, and Populus pollen. These pollen types settle, as clay does, in slack water. Chenopodiaceae-Amaranthus, Artemisia, other Tubuliflorae, and indeterminate pollen types correlate with sand-size particles, and are deposited by more turbulent water. Fluctuating pollen frequencies in alluvial deposits are related to sedimentology and do not reflect the local or regional vegetation where the sediments were deposited. Alluvial pollen is unreliable for reconstruction of paleoenvironments.  相似文献   
18.
With increasing computational resources, environmental models are run at finer grid spacing to resolve the land surface characteristics. The land use/land cover (LULC) data sets input into land surface models are used to assign various default parameters from a look-up tables. The objective of this study is to assess the potential uncertainty in the LULC data and to present a reclassification method for improving the accuracy of LULC data sets. The study focuses on the Southern Great Plains and specifically the Walnut River Watershed in southeastern Kansas, USA. The uncertainty analysis is conducted using two data sets: The National Land Cover Dataset 1992 (NLCD 92) and the Gap Analysis Program (GAP) data set, and a reclassification logic tree. A comparison of these data sets showed that they do not agree for approximately 27% of the watershed. Moreover, an accuracy assessment of these two data sets indicated that neither had an overall accuracy as high as 80%. Using the relationships between land-surface characteristics and LULC, a reclassification of the watershed was conducted using a logical model. This model iteratively reclassified the uncertain pixels according to their surface characteristics. The model utilized normalized difference vegetation index (NDVI) measurements during April and July 2003, elevation, and slope. The reclassification yielded a revised LULC dataset that was substantially improved. The overall accuracy of the revised data set was nearly 93%. The study results suggest: (i) as models adopt finer grid spacings, the uncertainty in the LULC data will become significant; (ii) assimilating NDVI into the land-surface models can reduce the uncertainty due to LULC assignment; (iii) the standard LULC data sets must be used with caution when the focus is on local scale; and (iv) reclassification is a valuable means of improving the accuracy of LULC data sets prior to applying them to local issues or phenomena.  相似文献   
19.
O. Nasir  M. Fall   《Engineering Geology》2008,101(3-4):146-153
The shear stress–strain behaviour and shear strength parameters of the interface between cemented paste backfill (CPB) and rock are of practical importance in the optimal and safe design of CPB structures. An understanding of the shear behaviour and properties at this interface is also required to develop comprehensive interface models for CPB-rock analyses, interface design methods for the static and dynamic stability analysis of CPB structures, and building high performance CPB structures. In this study, direct shear tests were conducted to investigate the interface shear strength behaviour between CPB and rock. All tests were carried out in a standard direct shear test apparatus for a range of curing ages of 1 to 28 days for the CPB. The procedures of the laboratory tests will be described. Results will be presented for interface shear behaviour, including stress–strain curves, vertical deformation and shear strength parameters. The test results show that the shear strength parameters and behaviour of the CPB-rock interface are time-dependent and significantly influenced by the normal load.  相似文献   
20.
A rapid, low-cost evaluation methodology using the wave-based techniques is proposed in this study in order to determine the design parameters e.g., elastic modulus and Poisson’s ratio of the laboratory compacted lateritic soils. Knowing the elastic wave velocities as measured with the wave propagation technique (i.e., a small-strain non-destructive test) and total mass density of the specimens, the elastic moduli and Poisson’s ratio of the soil specimens can be determined. In addition, the unconfined compression test (i.e., a large-strain destructive test) is also performed on the same specimens under the same unconfined testing condition in order to compare the moduli corresponding to different strain levels. The experimental results showed the potentials and limitations of using impulse signal for the determination of the elastic moduli and Poisson’s ratio for laboratory compacted soil specimens from elastic wave propagation techniques.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号