首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   7篇
测绘学   2篇
大气科学   1篇
地球物理   23篇
地质学   49篇
海洋学   11篇
天文学   35篇
自然地理   14篇
  2021年   4篇
  2020年   4篇
  2019年   4篇
  2018年   5篇
  2017年   3篇
  2016年   3篇
  2015年   4篇
  2014年   2篇
  2013年   10篇
  2012年   6篇
  2011年   1篇
  2010年   4篇
  2009年   6篇
  2008年   6篇
  2007年   2篇
  2006年   8篇
  2005年   4篇
  2004年   5篇
  2003年   4篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1996年   1篇
  1994年   5篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1975年   2篇
  1973年   1篇
排序方式: 共有135条查询结果,搜索用时 31 毫秒
61.
We report the results of experiments designed to separate the effects of temperature and pressure from liquid composition on the partitioning of Ni between olivine and liquid, \(D_{\text{Ni}}^{\text{ol/liq}}\). Experiments were performed from 1300 to 1600 °C and 1 atm to 3.0 GPa, using mid-ocean ridge basalt (MORB) glass surrounded by powdered olivine in graphite–Pt double capsules at high pressure and powdered MORB in crucibles fabricated from single crystals of San Carlos olivine at one atmosphere. In these experiments, pressure and temperature were varied in such a way that we produced a series of liquids, each with an approximately constant composition (~12, ~15, and ~21 wt% MgO). Previously, we used a similar approach to show that \(D_{\text{Ni}}^{\text{ol/liq}}\) for a liquid with ~18 wt% MgO is a strong function of temperature. Combining the new data presented here with our previous results allows us to separate the effects of temperature from composition. We fit our data based on a Ni–Mg exchange reaction, which yields \(\ln \left( {D_{\text{Ni}}^{\text{molar}} } \right) = \frac{{ -\Delta _{r(1)} H_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } }}{RT} + \frac{{\Delta _{r(1)} S_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } }}{R} - \ln \left( {\frac{{X_{\text{MgO}}^{\text{liq}} }}{{X_{{{\text{MgSi}}_{ 0. 5} {\text{O}}_{ 2} }}^{\text{ol}} }}} \right).\) Each subset of constant composition experiments displays roughly the same temperature dependence of \(D_{\text{Ni}}^{\text{ol/liq}}\) (i.e.,\(-\Delta _{r(1)} H_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\)) as previously reported for liquids with ~18 wt% MgO. Fitting new data presented here (15 experiments) in conjunction with our 13 previously published experiments (those with ~18 wt% MgO in the silicate liquid) to the above expression gives \(-\Delta _{r(1)} H_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\) = 3641 ± 396 (K) and \(\Delta _{r(1)} S_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\) = ? 1.597 ± 0.229. Adding data from the literature yields \(-\Delta _{r(1)} H_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\) = 4505 ± 196 (K) and \(\Delta _{r(1)} S_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\) = ? 2.075 ± 0.120, a set of coefficients that leads to a predictive equation for \(D_{\text{Ni}}^{\text{ol/liq}}\) applicable to a wide range of melt compositions. We use the results of our work to model the melting of peridotite beneath lithosphere of varying thickness and show that: (1) a positive correlation between NiO in magnesian olivine phenocrysts and lithospheric thickness is expected given a temperature-dependent \(D_{\text{Ni}}^{\text{ol/liq}} ,\) and (2) the magnitude of the slope for natural samples is consistent with our experimentally determined temperature dependence. Alternative processes to generate the positive correlation between NiO in magnesian olivines and lithospheric thickness, such as the melting of olivine-free pyroxenite, are possible, but they are not required to explain the observed correlation of NiO concentration in initially crystallizing olivine with lithospheric thickness.  相似文献   
62.
Recent robotic missions to Mars have offered new insights into the extent, diversity and habitability of the Martian sedimentary rock record. Since the Curiosity rover landed in Gale crater in August 2012, the Mars Science Laboratory Science Team has explored the origins and habitability of ancient fluvial, deltaic, lacustrine and aeolian deposits preserved within the crater. This study describes the sedimentology of a ca 13 m thick succession named the Pahrump Hills member of the Murray formation, the first thick fine‐grained deposit discovered in situ on Mars. This work evaluates the depositional processes responsible for its formation and reconstructs its palaeoenvironmental setting. The Pahrump Hills succession can be sub‐divided into four distinct sedimentary facies: (i) thinly laminated mudstone; (ii) low‐angle cross‐stratified mudstone; (iii) cross‐stratified sandstone; and (iv) thickly laminated mudstone–sandstone. The very fine grain size of the mudstone facies and abundant millimetre‐scale and sub‐millimetre‐scale laminations exhibiting quasi‐uniform thickness throughout the Pahrump Hills succession are most consistent with lacustrine deposition. Low‐angle geometric discordances in the mudstone facies are interpreted as ‘scour and drape’ structures and suggest the action of currents, such as those associated with hyperpycnal river‐generated plumes plunging into a lake. Observation of an overall upward coarsening in grain size and thickening of laminae throughout the Pahrump Hills succession is consistent with deposition from basinward progradation of a fluvial‐deltaic system derived from the northern crater rim into the Gale crater lake. Palaeohydraulic modelling constrains the salinity of the ancient lake in Gale crater: assuming river sediment concentrations typical of floods on Earth, plunging river plumes and sedimentary structures like those observed at Pahrump Hills would have required lake densities near freshwater to form. The depositional model for the Pahrump Hills member presented here implies the presence of an ancient sustained, habitable freshwater lake in Gale crater for at least ca 103 to 107 Earth years.  相似文献   
63.
64.
We have measured the rotation rate of short-lived solar filaments as a function of their latitude. The resulting rotation curve appears to be somewhat flatter than the corresponding curve for long-lived filaments.  相似文献   
65.
Activity coefficients of oxide components in the system CaO-MgO-Al2O3-SiO2 (CMAS) were calculated with the model of Berman (Berman R. G., “A thermodynamic model for multicomponent melts with application to the system CaO-MgO-Al2O3-SiO2,” Ph.D. dissertation, University of British Columbia, 1983) and used to explore large-scale relationships among these variables and between them and the liquid composition. On the basis of Berman’s model, the natural logarithm of the activity coefficient of MgO, ln(γMgOLiq), and ln(γMgOLiqSiO2Liq) are nearly linear functions of ln(γCaOLiq). All three of these variables are simple functions of the optical basicity Λ with which they display minima near Λ ∼ 0.54 that are generated by liquids with low ratios of nonbridging to tetrahedral oxygens (NBO/T) (<0.3) and a mole fraction ratio, XSiO2Liq/XAl2O3Liq, in the range 4 to 20. Variations in ln(γCaOLiq) at constant Λ near the minimum are due mostly to liquids with (XCaOLiq + XMgOLiq)/XAl2O3Liq < 1. The correlations with optical basicity imply that the electron donor power is an important factor in determining the thermodynamic properties of aluminosilicate liquids.For a constant NBO/T, ln(γCaOLiqAl2O3Liq) and ln(γMgOLiqγAl2O3Liq) form curves in terms of XSiO2Liq/XAl2O3Liq. The same liquids that generate minima in the Λ plots are also associated with minima in ln(γCaOLiqγAl2O3Liq) and ln(γMgOLiqγAl2O3Liq) as a function of XSiO2Liq/XAl2O3Liq. In addition, there are maxima or sharp changes in slope for NBO/T > 0.3, which occur for XSiO2Liq/XAl2O3Liq ranging from ∼0 to ∼6 and increase with increasing NBO/T. The systematic variations in activity coefficients as a function of composition and optical basicity reflect underlying shifts in speciation as the composition of the liquid is changed. On the basis of correlations among the activity coefficients, it is likely that the use of CaO, an exchange component such as SiMg−1 and two of MgO, CaAl2O4, or MgAl2O4 would yield significant savings in the number of parameters required to model the excess free energy surface of liquids over large portions of CMAS relative to the use of oxide end members.Systematic behavior of thermodynamic properties extends to small amounts of other elements dissolved in otherwise CMAS liquids. For example, ln(XFe2+Liq/XFe3+Liq) at constant oxygen fugacity is linearly correlated with ln(γCaOLiq). Similarly, ln(CS), where CS is the sulfide capacity is linearly correlated at constant temperature with each of the optical basicity, ln(aCaOLiq) and ln(γCaOLiq), although the correlation for the latter breaks down for low values of Λ. The well-known systematic behavior of sulfide capacity as a function of optical basicity for systems inside as well as outside CMAS suggests that ln(γCaSLiq) is also a simple function of optical basicity and that the relationships observed among the activity coefficients in CMAS may hold for more complex systems.  相似文献   
66.
Felsic lavas or rheomorphic ignimbrites: is there a chemical distinction?   总被引:3,自引:0,他引:3  
In the environment of felsic magma generation associated with continental flood basalt (CFB) provinces there is a close association between magma composition, phenocryst assemblage, temperature and eruption mechanism. In this paper we propose that by examining the chemical composition and, in particular the high field strength element (Zr and Nb) contents of the high silica rocks, we can identify those that contained halogen-rich volatiles and which degassed at different levels (deep versus shallow). The degassing depth has a direct influence on the type of eruption, with shallow degassing promoting explosive rather than effusive behaviour and consequentially the former is more likely to give rise to ignimbrites. Thus, we can infer likely eruption mechanisms, as high concentrations of F and Cl dramatically decrease magma viscosities and should favour deep degassing and hence promote lava effusion rather than explosive pyroclastic eruption. This hypothesis is tested by constraining the other possible variables which have an effect on the mode of eruption, and by examining the nature and composition of melt and fluid inclusions in quartz from CFB-associated felsic volcanic rocks.  相似文献   
67.
As conventional oil and gas reservoirs become depleted other unconventional energy sources have to be recovered and produced. Four of the major unconventional resources that are strategic for North American interests are heavy oil, oil sands, oil shales, and coal-bed methane. Recent interest and activity in Canada’s vast oil sands are progressing rapidly as soaring oil prices are fueling a ‘gold rush’ in oil sands development in Alberta. This interest is evident by the record-number of oil sands and heavy oil presentations at Energy Minerals Division (EMD)-sponsored sessions at the 2004 and 2005 Annual Conventions of the American Association of Petroleum Geologists (AAPG), held in Dallas, TX and Calgary, AB.  相似文献   
68.
69.
Far-field tsunami deposits observed in the Kahana Valley, O‘ahu, Hawai‘i (USA), were investigated for their organic-geochemical content. During short high-energy events, (tsunamis and storms) organic and chemical components are transported with sediment from marine to terrestrial areas. This study investigates the use of anthropogenic based organic geochemical compounds (such as polycyclic aromatic hydrocarbons, pesticides and organochlorides) as a means to identify tsunami deposits. Samples were processed by solid–liquid extraction and analyzed using gas chromatography–mass spectrometry. A total of 21 anthropogenic marker compounds were identified, of which 11 compounds were selected for detailed analysis. Although the tsunami deposits pre-date industrial activity in Hawai‘i by several hundred years, distinct changes were found in the concentrations of anthropogenic marker compounds between sandy tsunami deposits and the surrounding mud/peat layers, which may help in identifying tsunami deposits within cores. As expected, low overall concentrations of anthropogenic markers and pollutants were observed due to the lack of industrial input-sources and little anthropogenic environmental impact at the study site. This geochemical characterization of tsunami deposits shows that anthropogenic markers have significant potential as another high-resolution, multi-proxy method for identifying tsunamis in the sedimentary record.  相似文献   
70.
We present the first detection of a gravitational depletion signal at near-infrared wavelengths, based on deep panoramic images of the cluster Abell 2219 ( z =0.22) taken with the Cambridge Infrared Survey Instrument (CIRSI) at the prime focus of the 4.2-m William Herschel Telescope. Infrared studies of gravitational depletion offer a number of advantages over similar techniques applied at optical wavelengths, and can provide reliable total masses for intermediate-redshift clusters. Using the maximum-likelihood technique developed by Schneider, King & Erben, we detect the gravitational depletion at the 3 confidence level. By modelling the mass distribution as a singular isothermal sphere and ignoring the uncertainty in the unlensed number counts, we find an Einstein radius of (66 per cent confidence limit). This corresponds to a projected velocity dispersion of v 800 km s1, in agreement with constraints from strongly lensed features. For a Navarro, Frenk & White mass model, the radial dependence observed indicates a best-fitting halo scalelength of 125 h 1 kpc. We investigate the uncertainties arising from the observed fluctuations in the unlensed number counts, and show that clustering is the dominant source of error. We extend the maximum-likelihood method to include the effect of incompleteness, and discuss the prospects of further systematic studies of lensing in the near-infrared band.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号