首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   8篇
  国内免费   4篇
测绘学   2篇
大气科学   9篇
地球物理   55篇
地质学   59篇
海洋学   14篇
天文学   40篇
自然地理   5篇
  2022年   2篇
  2021年   6篇
  2020年   5篇
  2019年   4篇
  2018年   3篇
  2017年   6篇
  2016年   4篇
  2015年   3篇
  2014年   7篇
  2013年   14篇
  2012年   11篇
  2011年   17篇
  2010年   13篇
  2009年   14篇
  2008年   10篇
  2007年   9篇
  2006年   8篇
  2005年   8篇
  2004年   4篇
  2003年   4篇
  2002年   6篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有184条查询结果,搜索用时 83 毫秒
81.
With the aim to better understand the cause of the iron isotope heterogeneity of mantle-derived bulk peridotites, we compared the petrological, geochemical and iron isotope composition of four xenolith suites from different geodynamic settings; sub-arc mantle (Patagonia); subcontinental lithospheric mantle (Cameroon), oceanic mantle (Kerguelen) and cratonic mantle (South Africa). Although correlations were not easy to obtain and remain scattered because these rocks record successive geological events, those found between δ57Fe, Mg#, some major and trace element contents of rocks and minerals highlight the processes responsible for the Fe isotope heterogeneity. While partial melting processes only account for moderate Fe isotope variations in the mantle (<0.2 ‰, with bulk rock values yielding a range of δ57Fe ± 0.1 ‰ relative to IRMM-14), the main cause of Fe isotope heterogeneity is metasomatism (>0.9 ‰). The kinetic nature of rapid metasomatic exchanges between low viscosity melts/fluids and their wall-rocks peridotite in the mantle is the likely explanation for this large range. There are a variety of responses of Fe isotope signatures depending on the nature of the metasomatic processes, allowing for a more detailed study of metasomatism in the mantle with Fe isotopes. The current database on the iron isotope composition of peridotite xenoliths and mafic eruptive rocks highlights that most basalts have their main source deeper than the lithospheric mantle. Finally, it is concluded that due to a complex geological history, Fe isotope compositions of mantle xenoliths are too scattered to define a mean isotopic composition with enough accuracy to assess whether the bulk silicate Earth has a mean δ57Fe that is chondritic, or if it is ~0.1 ‰ above chondrites as initially proposed.  相似文献   
82.
Estimation of Fe3+/ΣFe ratios in materials at the submicrometre scale has been a long-standing challenge in the Earth and environmental sciences because of the usefulness of this ratio in estimating redox conditions as well as for geothermometry. To date, few quantitative methods with submicrometric resolution have been developed for this purpose, and most of them have used electron energy-loss spectroscopy carried out in the ultra-high vacuum environment of a transmission electron microscope (TEM). Scanning transmission X-ray microscopy (STXM) is a relatively new technique complementary to TEM and is increasingly being used in the Earth sciences. Here, we detail an analytical procedure to quantify the Fe3+/ΣFe ratio in silicates using Fe L2,3-edge X-ray absorption near edge structure (XANES) spectra obtained by STXM, and we discuss its advantages and limitations. Two different methods for retrieving Fe3+/ΣFe ratios from XANES spectra are calibrated using reference samples with known Fe3+ content by independent approaches. The first method uses the intensity ratio of the two major peaks at the L3-edge. This method allows mapping of Fe3+/ΣFe ratios at a spatial scale better than 50 nm by the acquisition of 5 images only. The second method employs a 2-eV-wide integration window centred on the L2 maximum for Fe3+, which is compared to the total integral intensity of the Fe L2-edge. These two approaches are applied to metapelites from the Glarus massif (Switzerland), containing micrometre-sized chlorite and illite grains and prepared as ultrathin foils by focused ion beam milling. Nanometre-scale mapping of iron redox in these samples is presented and shows evidence of compositional zonation. The existence of such zonation has crucial implications for geothermometry and illustrates the importance of being able to measure Fe3+/ΣFe ratios at the submicrometre scale in geological samples.  相似文献   
83.
The methods of luminescence spectroscopy and microscopy are widely used for the analysis of gem materials. This paper gives an overview of the most important applications of the analysis of laser and UV excited luminescence by spectroscopy and visually by microscopy with emphasis on diamond, and specifically natural type Ib diamond, little studied so far. Luminescence based techniques are paramount to the gemmological analysis of diamond, in order to determine whether it is natural, treated or synthetic. The great sensitivity of luminescence helps detect some emitting centres that are undetectable by any other analytical method. Hence, especially for diamond, luminescence is an enabling technology, as illustrated by its pioneering use of imagery for the separation of natural and synthetic diamond, and of spectroscopy for the detection of High Pressure–High Temperature treatment. For all other gemstones the applications are at the moment less numerous, but nevertheless they remain highly important. They provide quickly information on the identification of a gem material, and its treatment. Besides the study of broad band emissions caused by various colour centres, the typical PL-causing trace elements (amongst others) are chromium, manganese, uranium and rare earth elements. In pearls the study of broad band luminescence can be useful, and particularly the study of pink to red porphyrin luminescence in pearls from certain species such as Pinctada and Pteria and others can help identify the pearl-producing mollusc, or if a pearl has been dyed or not. Type Ib diamonds are representative of the importance and complexity of the analysis of luminescence by microscopy and spectroscopy. They show a wide range of sometimes very complex emissions that result in luminescence colours from green to yellow to orange or red. These emissions show generally very inhomogeneous distribution. They are caused by a range of defects, however only a few of them are well characterized.  相似文献   
84.
Decision-makers have confirmed the long term objective of preventing a temperature increase greater than 2 °C. This paper aims at appraising by means of a cost-benefit analysis whether decision makers’ commitment to meet the 2 °C objective is credible or not. Within the framework of a cost-benefit type integrated assessment model, we consider that the economy faces climate damages with a threshold at 2 °C. We run the model for a broad set of scenarios accounting for the diversity of “worldviews” in the climate debate. For a significant share of scenarios we observe that it is considered optimal to exceed the threshold. Among those “non-compliers” we discriminate ”involuntary non-compliers” who cannot avoid the exceedance due to physical constraint from ”deliberate compliers” for whom the exceedance results from a deliberate costs-benefit analysis. A second result is that the later mitigation efforts begin, the more difficult it becomes to prevent the exceedance. In particular, the number of ”deliberate non-compliers” dramatically increases if mitigation efforts do not start by 2020, and the influx of involuntary non-compliers become overwhelming f efforts are delayed to 2040. In light of these results we argue that the window of opportunity for reaching the 2 °C objective with a credible chance of success is rapidly closing during the present decade. Further delay in finding a climate agreement critically undermines the credibility of the objective.  相似文献   
85.
Jouanneau  Nicolas  Sentchev  Alexei  Dumas  Franck 《Ocean Dynamics》2013,63(11):1321-1340

The MARS-3D model in conjunction with the particle tracking module Ichthyop is used to study circulation and tracer dynamics under a variety of forcing conditions in the eastern English Channel, and in the Boulogne-sur-Mer harbour (referred to hereafter as BLH). Results of hydrodynamic modelling are validated against the tidal gauge data, VHF radar surface velocities and ADCP measurements. Lagrangian tracking experiments are performed with passive particles to study tracer dispersal along the northern French coast, with special emphasis on the BLH. Simulations revealed an anticyclonic eddy generated in the harbour at rising tide. Tracers, released during flood tide at the Liane river mouth, move northward with powerful clockwise rotating current. After the high water, the current direction changes to westward, and tracers leave the harbour through the open boundary. During ebb tide, currents convergence along the western open boundary but no eddy is formed, surface currents inside the harbour are much weaker and the tracer excursion length is small. After the current reversal at low water, particles are advected shoreward resulting in a significant increase of the residence time of tracers released during ebb tide. The effect of wind on particle dispersion was found to be particularly strong. Under strong SW wind, the residence time of particles released during flood tide increases from 1.5 to 6 days. For release during ebb tide, SW wind weakens the southward tidally induced drift and thus the residence time decreases. Similar effects are observed when the freshwater inflow to the harbour is increased from 2 to 10 m3/s during the ebb tide flow. For flood tide conditions, the effect of freshwater inflow is less significant. We also demonstrate an example of innovative coastal management targeted at the reduction of the residence time of the pathogenic material accidentally released in the harbour.

  相似文献   
86.
The two orders of magnitude drop between the measured atmospheric abundances of non-radiogenic argon, krypton and xenon in Earth versus Mars is striking. Here, in order to account for this difference, we explore the hypothesis that clathrate deposits incorporated into the current martian cryosphere have sequestered significant amounts of these noble gases assuming they were initially present in the paleoatmosphere in quantities similar to those measured on Earth (in mass of noble gas per unit mass of the planet). To do so, we use a statistical-thermodynamic model that predicts the clathrate composition formed from a carbon dioxide-dominated paleoatmosphere whose surface pressure ranges up to 3 bars. The influence of the presence of atmospheric sulfur dioxide on clathrate composition is investigated and we find that it does not alter the trapping efficiencies of other minor species. Assuming nominal structural parameters for the clathrate cages, we find that a carbon dioxide equivalent pressure of 0.03 and 0.9 bar is sufficient to trap masses of xenon and krypton, respectively, equivalent to those found on Earth in the clathrate deposits of the cryosphere. In this case, the amount of trapped argon is not sufficient to explain the measured Earth/Mars argon abundance ratio in the considered pressure range. In contrast, with a 2% contraction of the clathrate cages, masses of xenon, krypton and argon at least equivalent to those found on Earth can be incorporated into clathrates if one assumes the trapping of carbon dioxide at equivalent atmospheric pressures of ~2.3 bar. The proposed clathrate trapping mechanism could have then played an important role in the shaping of the current martian atmosphere.  相似文献   
87.
88.
Etna's January 2011 eruption provided an excellent opportunity to test the ability of Meteosat Second Generation satellite's Spinning Enhanced Visible and InfraRed Imager (SEVIRI) sensor to track a short-lived effusive event. The presence of lava fountaining, the rapid expansion of lava flows, and the complexity of the resulting flow field make such events difficult to track from the ground. During the Etna's January 2011 eruption, we were able to use thermal data collected by SEVIRI every 15 min to generate a time series of the syn-eruptive heat flux. Lava discharge waxed over a ~1-h period to reach a peak that was first masked from the satellite view by a cold tephra plume and then was of sufficient intensity to saturate the 3.9-μm channel. Both problems made it impossible to estimate time-averaged lava discharge rates using the syn-eruptive heat flux curve. Therefore, through integration of data obtained by ground-based Doppler radar and thermal cameras, as well as ancillary satellite data (from Moderate Resolution Imaging Spectrometer and Advanced Very High Resolution Radiometer), we developed a method that allowed us to identify the point at which effusion stagnated, to allow definition of a lava cooling curve. This allowed retrieval of a lava volume of ~1.2 × 106 m3, which, if emitted for 5 h, was erupted at a mean output rate of ~70 m3 s−1. The lava volume estimated using the cooling curve method is found to be similar to the values inferred from field measurements.  相似文献   
89.
The well-documented 1883 eruption of Krakatau volcano (Indonesia) offers an opportunity to couple the eruption’s history with the tsunami record. The aim of this paper is not to re-analyse the scenario for the 1883 eruption but to demonstrate that the study of tsunami deposits provides information for reconstructing past eruptions. Indeed, though the characteristics of volcanogenic tsunami deposits are similar to those of other tsunami deposits, they may include juvenile material (e.g. fresh pumice) or be interbedded with distal pyroclastic deposits (ash fall, surges), due to their simultaneity with the eruption. Five kinds of sedimentary and volcanic facies related to the 1883 events were identified along the coasts of Java and Sumatra: (1) bioclastic tsunami sands and (2) pumiceous tsunami sands, deposited respectively before and during the Plinian phase (26–27 August); (3) rounded pumice lapilli reworked by tsunami; (4) pumiceous ash fall deposits and (5) pyroclastic surge deposits (only in Sumatra). The stratigraphic record on the coasts of Java and Sumatra, which agrees particularly well with observations of the 1883 events, is tentatively linked to the proximal stratigraphy of the eruption.  相似文献   
90.
The occurrence of CO2-rich lavas (carbonatites, kimberlites) and carbonate-rich xenoliths provide evidence for the existence of carbonatitic melts in the mantle. To model the chemical composition of such melts in the deep mantle, we experimentally determined partition coefficients for 23 trace elements (including REE, U-Th, HFSE, LILE) between deep mantle minerals and carbonatite liquids at 20 and 25 GPa and 1600 °C. Under these conditions, majoritic garnet and CaSiO3 perovskite are the main reservoirs for trace elements. This study used both femtosecond LA-ICP-MS and SIMS techniques to measure reliable trace element concentrations. Comparison of the two techniques shows a general agreement, except for Sc and Ba. Our experimentally determined partition coefficients are consistent with the lattice strain model. The data suggest an effect of melt structure on partition coefficients in this pressure range. For instance, strain-free partition coefficient (D0) for majorite-carbonatite melts do not follow the order of cation valence, , observed for majorite-CO2-free silicate melts. The newly determined partition coefficients were combined with trace element composition of majoritic garnets found as inclusions in diamond to model trace element patterns of deep-seated carbonatites. The result compares favorably with natural carbonatites. This suggests that carbonatites can originate from the mantle transition zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号