首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58274篇
  免费   1010篇
  国内免费   589篇
测绘学   1652篇
大气科学   4431篇
地球物理   10971篇
地质学   21142篇
海洋学   5147篇
天文学   13553篇
综合类   212篇
自然地理   2765篇
  2022年   384篇
  2021年   685篇
  2020年   719篇
  2019年   757篇
  2018年   1721篇
  2017年   1649篇
  2016年   2075篇
  2015年   1111篇
  2014年   1938篇
  2013年   3119篇
  2012年   1971篇
  2011年   2557篇
  2010年   2266篇
  2009年   2950篇
  2008年   2479篇
  2007年   2519篇
  2006年   2347篇
  2005年   1769篇
  2004年   1733篇
  2003年   1640篇
  2002年   1588篇
  2001年   1398篇
  2000年   1311篇
  1999年   1073篇
  1998年   1121篇
  1997年   1014篇
  1996年   873篇
  1995年   855篇
  1994年   761篇
  1993年   647篇
  1992年   633篇
  1991年   631篇
  1990年   673篇
  1989年   533篇
  1988年   537篇
  1987年   564篇
  1986年   516篇
  1985年   665篇
  1984年   724篇
  1983年   659篇
  1982年   612篇
  1981年   549篇
  1980年   513篇
  1979年   514篇
  1978年   515篇
  1977年   405篇
  1976年   389篇
  1975年   405篇
  1974年   355篇
  1973年   399篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
921.

Background  

The application of surface complexation models (SCMs) to natural sediments and soils is hindered by a lack of consistent models and data for large suites of metals and minerals of interest. Furthermore, the surface complexation approach has mostly been developed and tested for single solid systems. Few studies have extended the SCM approach to systems containing multiple solids.  相似文献   
922.

Background

Large spatial, seasonal and annual variability of major drivers of the carbon cycle (precipitation, temperature, fire regime and nutrient availability) are common in the Sahel region. This causes large variability in net ecosystem exchange and in vegetation productivity, the subsistence basis for a major part of the rural population in Sahel. This study compares the 2005 dry and wet season fluxes of CO2 for a grass land/sparse savanna site in semi arid Sudan and relates these fluxes to water availability and incoming photosynthetic photon flux density (PPFD). Data from this site could complement the current sparse observation network in Africa, a continent where climatic change could significantly impact the future and which constitute a weak link in our understanding of the global carbon cycle.

Results

The dry season (represented by Julian day 35–46, February 2005) was characterized by low soil moisture availability, low evapotranspiration and a high vapor pressure deficit. The mean daily NEE (net ecosystem exchange, Eq. 1) was -14.7 mmol d-1 for the 12 day period (negative numbers denote sinks, i.e. flux from the atmosphere to the biosphere). The water use efficiency (WUE) was 1.6 mmol CO2 mol H2O-1 and the light use efficiency (LUE) was 0.95 mmol CO2 mol PPFD-1. Photosynthesis is a weak, but linear function of PPFD. The wet season (represented by Julian day 266–273, September 2005) was, compared to the dry season, characterized by slightly higher soil moisture availability, higher evapotranspiration and a slightly lower vapor pressure deficit. The mean daily NEE was -152 mmol d-1 for the 8 day period. The WUE was lower, 0.97 mmol CO2 mol H2O-1 and the LUE was higher, 7.2 μmol CO2 mmol PPFD-1 during the wet season compared to the dry season. During the wet season photosynthesis increases with PPFD to about 1600 μmol m-2s-1 and then levels off.

Conclusion

Based on data collected during two short periods, the studied ecosystem was a sink of carbon both during the dry and wet season 2005. The small sink during the dry season is surprising and similar dry season sinks have not to our knowledge been reported from other similar savanna ecosystems and could have potential management implications for agroforestry. A strong response of NEE versus small changes in plant available soil water content was found. Collection and analysis of flux data for several consecutive years including variations in precipitation, available soil moisture and labile soil carbon are needed for understanding the year to year variation of the carbon budget of this grass land/sparse savanna site in semi arid Sudan.  相似文献   
923.
The crystal structures of two new compounds (H3O)2[(UO2)(SeO4)2(H2O)](H2O)2 (1, orthorhombic, Pnma, a = 14.0328(18), b = 11.6412(13), c = 8.2146(13) Å, V = 134.9(3) Å3) and (H3O)2[(UO2)(SeO4)2(H2O)](H2O) (2, monoclinic, P21/c, a = 7.8670(12), b = 7.5357(7), c = 21.386(3) Å, β = 101.484(12)°, V = 1242.5(3) Å3) have been solved by direct methods and refined to R 1 = 0.076 and 0.080, respectively. The structures of both compounds contain sheet complexes [(UO2)(SeO4)2]2? formed by cornershared [(UO2)O4(H2O)] bipyramids and SeO4 tetrahedrons. The sheets are parallel to the (100) plane in structure 1 and to (?102) in structure 2. The [(UO2)(SeO4)2(H2O)]2? layers are linked by hydrogen bonds via interlayer groups H2O and H3O+. The sheet topologies in structures 1 and 2 are different and correspond to the topologies of octahedral and tetrahedral complexes in rhomboclase (H2O2)+[Fe(SO4)2(H2O)2] and goldichite K[Fe(SO4)2(H2O)2](H2O)2, respectively.  相似文献   
924.
Volkhovites—tektite-like glasses—have been detected in the Holocene glacial drift along the right bank of the Volkhov River. A cryptomagmatic model of their formation and pre-Holocene age of volkhovite melts, cinder, and frothed glasses has been suggested (Skublov et al., 2007). Four geochemical types of volkhovites are distinguished: (1) manganous (Mn, Fe, Cr, V, Si, Nb, Pb, H), (2) magnesian (Mg, Al, Ti, F, B), (3) potassic (K, Rb, Cs), and (4) calcic (Ca, REEs, Ba, U, Th, Ta, Hf, Y, Sc, Cl). In light of the geochemical data, volkhovites are regarded as natural silicate glasses of kimberlite-carbonatite composition. Their types are called kimberlitic (Mn type), kimberlitic-carbonatitic (Mg type), lamproitic-carbonatitic (K type), and carbonatitic (Ca type). Volkhovites are suggested to be indicators of undiscovered diamond mineralization of kimberlite or carbonatite (Chagatai) types.  相似文献   
925.
The central magnetic field and rotation of the solar radiative zone are responsible for corrections to the g-mode frequencies. Magnetogravitational spectra are calculated analytically in a simple one-dimensional MHD model that goes beyond the WKB approximation and avoid any cusp resonances that trap the wave within the radiative zone in the presence of a weak magnetic background. The calculations are compared with spacecraft observations of the 1% frequency shifts for candidate g-modes found in the SOHO GOLF experiment. The magnetic correction is the main contribution for a strong magnetic field satisfying the approximation used. It is shown that a constant magnetic field of 700 kG in the radiative zone provides the required frequency shift for the n = ?10 g-mode. The rotational correction, which is due to the Coriolis force in the one-dimensional model used, is much less than a percent (αΩ ≤ 0.003).  相似文献   
926.
Assessment of recharge in a structurally complex upland karst limestone aquifer situated in a semi-arid environment is difficult. Resort to surrogate indicators such as measurement of spring outflow and borehole discharge, is a common alternative, and attempts to apply conventional soil moisture deficit analysis may not adequately account for the intermittent spate conditions that arise in such environments. A modelling approach has been made using the West Bank Mountain Aquifer system in the Middle East as a trial. The model uses object oriented software which allows various objects to be switched on and off. Each of the main recharge processes identified in the West Bank is incorporated. The model allows either conventional soil moisture deficit analysis calculations or wetting threshold calculations to be made as appropriate, and accommodates both direct recharge and secondary recharge. Daily time steps enable recharge and runoff routing to be calculated for each node. Model runs have enabled a series of simulations for each of the three aquifer basins in the West Bank and for the whole of the West Bank. These provide recharge estimates comparable to those prepared by earlier workers by conventional means. The model is adaptable and has been successfully used in other environments.  相似文献   
927.
This study pertains to prediction of liquefaction susceptibility of unconsolidated sediments using artificial neural network (ANN) as a prediction model. The backpropagation neural network was trained, tested, and validated with 23 datasets comprising parameters such as cyclic resistance ratio (CRR), cyclic stress ratio (CSR), liquefaction severity index (LSI), and liquefaction sensitivity index (LSeI). The network was also trained to predict the CRR values from LSI, LSeI, and CSR values. The predicted results were comparable with the field data on CRR and liquefaction severity. Thus, this study indicates the potentiality of the ANN technique in mapping the liquefaction susceptibility of the area.  相似文献   
928.
Internal surface, formation factor, Nuclear Magnetic Resonance (NMR)-T2 relaxation times and pore radius distributions were measured on representative core samples for the estimation of hydraulic permeability. Permeability is estimated using various versions of the classic Kozeny–Carman-equation (K–C) and a further development of K–C, the fractal PaRiS-model, taking into account the internal surface. In addition to grain and pore size distribution, directly connected to permeability, internal surface reflects the internal structure (“micro morphology”). Lithologies could be grouped with respect to differences in internal surface. Most melt rich impact breccia lithologies exhibit large internal surfaces, while Tertiary post-impact sediments and Cretaceous lithologies in displaced megablocks display smaller internal surfaces. Investigations with scanning electron microscopy confirm the correlation between internal surface and micro morphology. In addition to different versions of K–C, estimations by means of NMR, pore radius distributions and some gas permeability measurements serve for cross-checking and calibration. In general, the different estimations from the independent methods and the measurements are in satisfactory accordance. For Tertiary limestones and Suevites bulk with very high porosities (up to 35%) permeabilites between 10−14 and 10−16 m2 are found, whereas in lower Suevite, Cretaceous anhydrites and dolomites, bulk permeabilites are between 10−15 and 10−23 m2.  相似文献   
929.
Groundwater development has contributed significantly to food security and reduction in poverty in Pakistan. Due to rapid population growth there has been a dramatic increase in the intensity of groundwater exploitation leading to declining water tables and deteriorating groundwater quality. In such prevailing conditions, the hydrogeological appraisal of escalating groundwater exploitation has become of paramount importance. Keeping this in view, a surface water–groundwater quantity and quality model was developed to assess future groundwater trends in the Rechna Doab (RD), a sub-catchment of the Indus River Basin. Scenario analysis shows that if dry conditions persist, there will be an overall decline in groundwater levels of around 10 m for the whole of RD during the next 25 years. The lower parts of RD with limited surface water supplies will undergo the highest decline in groundwater levels (10 to 20 m), which will make groundwater pumping very expensive for farmers. There is a high risk of groundwater salinization due to vertical upconing and lateral movement of highly saline groundwater into the fresh shallow aquifers in the upper parts of RD. If groundwater pumping is allowed to increase at the current rate, there will be an overall decline in groundwater salinity for the lower and middle parts of RD because of enhanced river leakage.  相似文献   
930.
Point scale studies in different settings of glacial geology show a large local variation of redox conditions. There is a need to develop an upscaling methodology for catchment scale models. This paper describes a study of field-scale heterogeneity of redox-interfaces in a till aquitard within an area of 600?×?600 m. The results showed significant variation of the depths to the redox-interface and thickness of the aquitard. Nitrate was present above the redox-interface but reduced to non-detectable levels a few metres below the interface. An upscaling approach for an area of 92 km2 is proposed. Two models are proposed to predict the depth to the redox-interface in the aquitard and the resulting nitrate recharge concentrations to an underlying aquifer. The first model assumes that the depth to the redox-interface reflects the hydraulic head in the aquitard, and the second model assumes that the depth of the redox-interface is randomly distributed according to a log-normal probability distribution function. The upscaling approach using the random redox model estimated recharge concentrations comparable to the observed concentration in the underlying aquifer. The presented upscaling approach is applicable in distributed catchment models where sub-grid variability cannot be represented by the large grids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号