首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1642篇
  免费   235篇
  国内免费   342篇
测绘学   96篇
大气科学   303篇
地球物理   415篇
地质学   731篇
海洋学   180篇
天文学   157篇
综合类   172篇
自然地理   165篇
  2024年   9篇
  2023年   24篇
  2022年   81篇
  2021年   83篇
  2020年   58篇
  2019年   96篇
  2018年   69篇
  2017年   80篇
  2016年   86篇
  2015年   61篇
  2014年   97篇
  2013年   75篇
  2012年   72篇
  2011年   75篇
  2010年   94篇
  2009年   94篇
  2008年   99篇
  2007年   85篇
  2006年   59篇
  2005年   70篇
  2004年   30篇
  2003年   41篇
  2002年   38篇
  2001年   43篇
  2000年   69篇
  1999年   80篇
  1998年   55篇
  1997年   48篇
  1996年   58篇
  1995年   47篇
  1994年   42篇
  1993年   33篇
  1992年   21篇
  1991年   19篇
  1990年   19篇
  1989年   25篇
  1988年   16篇
  1987年   11篇
  1986年   6篇
  1985年   6篇
  1984年   2篇
  1983年   7篇
  1982年   8篇
  1981年   3篇
  1979年   7篇
  1978年   3篇
  1977年   6篇
  1972年   2篇
  1971年   3篇
  1958年   2篇
排序方式: 共有2219条查询结果,搜索用时 15 毫秒
961.
Interactions between turbulence, suspended sediment concentration (SSC), settling velocity, effective density, fractal dimension, and floc size were studied on the tide-dominated, muddy coastal shelf of the southwestern Yellow Sea, China. The measurements were carried out in July 2013 at two sites located in water depths of 21.2 and 22.1 m. Negative correlations were observed between shear rate, SSC, effective density, and mean floc size, which supports the results of previous numerical, experimental, and field studies. A significant positive correlation was observed between near-bed SSC and shear rate, an indication that SSC variations are controlled by turbulence and re-suspension. In addition, significant linear relationships were found between settling velocity and other parameters (floc size, turbulence, SSC, effective density, and fractal dimension) at the two sites, indicating that the controlling factors on settling velocity are spatially variable. Principal component analysis was applied to determine the relative importance of turbulence, flocculation ability, and SSC as controls on floc size in situ. The relative contributions of turbulence, flocculation ability, and SSC to floc size (at both sites) were ~33.0%, 30.3%, and 29.7%, respectively, this being a new field-based quantitative analysis of the controls on floc size. The findings demonstrate that, in nature, flocculation ability affects floc size to the same degree as turbulence and SSC. Therefore, predictions of floc size in coastal marine environments require constraints not only on turbulence and SSC, but also on flocculation ability.  相似文献   
962.
963.
Phaeodactylum tricornutum is a potential livestock for the combined production of eicosapentaenoic acid (EPA) and fucoxanthin. In this study, six marine diatom strains identified as P. tricornutum were cultured and their total lipid, fatty acid composition and major photosynthetic pigments determined. It was found that the cell dry weight concentration and mean growth rate ranged between 0.24–0.36 g/L and 0.31–0.33/d, respectively. Among the strains, SCSIO771 presented the highest total lipid content, followed by SCSIO828, and the prominent fatty acids in all strains were C16:0, C16:1, C18:1, and C20:5 (EPA). Polyunsaturated fatty acids, including C16:2, C18:2, and EPA, comprised a significant proportion of the total fatty acids. EPA was markedly high in all strains, with the highest in SCSIO828 at 25.65% of total fatty acids. Fucoxanthin was the most abundant pigment in all strains, with the highest in SCSIO828 as well, at 5.50 mg/g. The collective results suggested that strain SCSIO828 could be considered a good candidate for the concurrent production of EPA and fucoxanthin.  相似文献   
964.
The accurate estimation of evapotranspiration (ET) is essential for assessing water availability and requirements of regional-scale terrestrial ecosystems, and for understanding the hydrological cycle in alpine ecosystems. In this study, two large-scale weighing lysimeters were employed to estimate the magnitude and dynamics of actual evapotranspiration in a humid alpine Kobresia meadow from January 2018 to December 2019 on the northeastern Qinghai-Tibetan Plateau (QTP). The results showed that daily ETa averaged 2.24 ± 0.10 mm day −1 throughout the study period, with values of 3.89 ± 0.14 and 0.81 ± 0.06 mm day−1 during the growing season and non-growing season, respectively. The cumulative ETa during the study period was 937.39 mm, exceeding precipitation (684.20 mm) received at the site during the same period by 37%, suggesting that almost all precipitation in the lysimeters was returned to the atmosphere by evapotranspiration. Furthermore, the cumulative ETa (805.04 mm) was almost equal to the maximum potential evapotranspiration estimated by the FAO-56 reference evapotranspiration (ET0) (801.94 mm) during the growing season, but the cumulative ETa (132.25 mm) was 113.72% less than the minimum equilibrium ETeq) (282.86 mm) during the non-growing season due to the limited surface moisture in frozen soil. The crop coefficient (Kc) also showed a distinct seasonal pattern, with a monthly average of 1.01 during the growing season. Structural equation model (SEM) and boosted regression tree (BRT) show that net radiation and air temperature were the most important factors affecting daily ETa during the whole study period and growing season, but that non-growing season ETa was dominated by soil water content and net radiation. The daily Kc was dominated by net radiation. Furthermore, both ETa and Kc were also affected by aboveground biomass.  相似文献   
965.
The fast update rate and good performance of new generation electronic sector scanning sonars is now allowing practicable use of temporal information for signal processing tasks such as object classification and motion estimation. Problems remain, however, as objects change appearance, merge, maneuver, move in and out of the field of view, and split due to poor segmentation. This paper presents an approach to the segmentation, two-dimensional motion estimation, and subsequent tracking of multiple objects in sequences of sector scan sonar images. Applications such as ROV obstacle avoidance, visual servoing, and underwater surveillance are relevant. Initially, static and moving objects are distinguished in the sonar image sequence using frequency-domain filtering. Optical flow calculations are then performed on moving objects with significant size to obtain magnitude and direction motion estimates. Matches of these motion estimates, and the future positions they predict, are then used as a basis for identifying corresponding objects in adjacent scans. To enhance robustness, a tracking tree is constructed storing multiple possible correspondences and cumulative confidence values obtained from successive compatibility measures. Deferred decision making is then employed to enable best estimates of object tracks to be updated as subsequent scans produce new information. The method is shown to work well, with good tracking performance when objects merge, split, and change shape. The optical flow is demonstrated to give position prediction errors of between 10 and 50 cm (1%-5% of scan range), with no violation of smoothness assumptions using sample rates between 4 and 1 frames/s  相似文献   
966.
Here we briefly report on the discovery of a new Fossil‐Lagerstätte locality, Owadów‐Brzezinki quarry (central Poland), which exposes Late Jurassic (Late Tithonian) carbonate sediments with an extremely fossiliferous horizon of lithographic‐type limestones. Numerous specimens of horseshoe crabs were found in association with an enormously rich assemblage of the soft‐shelled bivalves Corbulomima obscura and Mesosaccella sp., the remains of various fishes and marine reptiles, rare ammonites, crustaceans, land insects and pterosaurs. The uniqueness of this new locality lies in its very close stratigraphical relationship to one of the most famous Fossil‐Lagerstätte localities in the world—Solnhofen, in southern Germany, with approximately 2 Ma separating them. Marine and terrestrial creatures lived and died during the Late Jurassic both at Solnhofen (Hybonotum Zone) and in another area (Owadów‐Brzezinki quarry, Zarajskensis Subzone), under closely related environmental conditions. The small palaeogeographical distance separating these two locations enables, for the first time, an effective palaeobiological test of the pace of evolutionary speciation amongst different groups of organisms.  相似文献   
967.
Groundwater age is often used to estimate groundwater recharge through a simplified analytical approach. This estimated recharge is thought to be representative of the mean recharge between the point of entry and the sampling point. However, given the complexity in actual recharge, whether the mean recharge is reasonable is still unclear. This study examined the validity of the method to estimate long-term average groundwater recharge and the possibility of obtaining reasonable spatial recharge pattern. We first validated our model in producing reasonable age distributions using a constant flux boundary condition. We then generated different flow fields and age patterns by using various spatially varying flux boundary conditions with different magnitudes and wavelengths. Groundwater recharge was estimated and analysed afterwards using the method at the spatial scale. We illustrated the main findings with a field example in the end. Our results suggest that we can estimate long-term average groundwater recharge with 10% error in many parts of an aquifer. The size of these areas decreases with the increase in both the amplitude and the wavelength. The chance of obtaining a reasonable groundwater recharge is higher if an age sample is collected from the middle of an aquifer and at downstream areas. Our study also indicates that the method can also be used to estimate local groundwater recharge if age samples are collected close to the water table. However, care must be taken to determine groundwater age regardless of conditions.  相似文献   
968.
The Gurbantonggut Desert, China, is an ideal site for study of sublimation from the snowpack because there are sparse vegetation and simple topography, and the wind speed is not large enough to blow snow into the atmosphere from the snowpack. Daily sublimation was measured by manual snow lysimeters at 8:00, and an automatic weather station was deployed at the top of a stout longitudinal dune chain at the southeastern edge of the desert. It is shown that on a daily scale, there was an extremely significant no‐intercept linear relationship between the measured sublimation and that calculated by the bulk aerodynamic method, although the former was only 83.8% of the latter. It is also demonstrated that ?10°C and 2 m/s were the thresholds where the sublimation varied with the air temperature and the wind speed. When these two thresholds were exceeded, the sublimation accelerated. However, the air temperature and the wind speed at 2 m above the ground averaged ?17.2°C and 1.3 m/s, respectively, and the percentages of the time when the air temperature was below ?10 °C and the wind speed was below 2 m/s were 76.9% and 85.1%, respectively. As a result, the rate of sublimation was quite low most of the time, and the thin snowpack remained in a quasi‐static state until the melt stage started. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
969.
Lu Zhuo  Qiang Dai  Dawei Han 《水文研究》2015,29(11):2463-2477
Hydrological models play a significant role in modelling river flow for decision making support in water resource management. In the past decades, many researchers have made a great deal of efforts in calibrating and validating various models, with each study being focused on one or two models. As a result, there is a lack of comparative analysis on the performance of those models to guide hydrologists to choose appropriate models for the individual climate and physical conditions. This paper describes a two‐level meta‐analysis to develop a matching system between catchment complexity (based on catchment significant features (CSFs)) and model types. The intention is to use the available CSF information for choosing the most suitable model type for a given catchment. In this study, the CSFs include the elements of climate, soil type, land cover and catchment scale. Specific choices of model types in small and medium catchments are further explored with all CSF information obtained. In particular, it is interesting to find that semi‐distributed models are the most suitable model type for catchments with the area over 3000 km2, regardless of other CSFs. The potential methodology for expanding the matching system between catchment complexity and model complexity is discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
970.
Remote sensing data sets and a high-resolution three-dimensional regional ocean model were utilized to investigate the shifting of warm/cold regime and the associated sea level variation in the South China Sea (SCS) during 2000–2003. Both the altimetry data and the model results showed an increase in the sea level (warm phase) followed by an abrupt decrease (cold phase) in the SCS during 2000–2003. Heat budget calculations performed with the model revealed excess heat advection from the western Pacific warm pool into the SCS during the warm phase than the cold phase. The warm phase, which occurred during La Niña episodes, resulted from the intrusion of abnormally warmer western Pacific water that increased the heat content and thus sea level in the SCS. The cold phase, which occurred during El Niño episodes, was triggered by a reduction in the net atmospheric heat flux followed by cold water advection into the SCS. Decrease in the rate of precipitation minus evaporation (P?E) also accounted for the falling of sea level during cold phase. The present study integrated the available remote sensing data and advanced numerical model to identify the time-dependent three-dimensional dynamic and thermodynamic forcing that are important in governing the warm/cold regime shift in the SCS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号