首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   13篇
  国内免费   2篇
测绘学   2篇
大气科学   10篇
地球物理   50篇
地质学   63篇
海洋学   30篇
天文学   45篇
自然地理   4篇
  2024年   1篇
  2023年   1篇
  2021年   2篇
  2020年   7篇
  2019年   8篇
  2018年   6篇
  2017年   9篇
  2016年   3篇
  2015年   2篇
  2014年   8篇
  2013年   5篇
  2012年   10篇
  2011年   6篇
  2010年   7篇
  2009年   11篇
  2008年   11篇
  2007年   11篇
  2006年   6篇
  2005年   7篇
  2004年   7篇
  2003年   10篇
  2002年   5篇
  2001年   7篇
  2000年   4篇
  1999年   3篇
  1998年   5篇
  1997年   6篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有204条查询结果,搜索用时 15 毫秒
81.
82.
We observed cross sectional ultra‐thin sections near the surface of 12 particles recovered from the S‐type asteroid Itokawa by the Hayabusa spacecraft in 2010, using spherical aberration–corrected STEM and conventional TEM. Although their mineralogy is almost identical to the equilibrated LL chondrites and therefore basically anhydrous, micrometer‐to‐submicrometer‐sized sylvite was identified on the surface of Itokawa particle RA‐QD02‐0034. Separately, micrometer‐sized halite was also identified on the surface of Itokawa particle RA‐QD02‐0129. Detailed inspection of the sample processing procedures at the JAXA's Planetary Materials Sample Curation Facility and textural observation of the sylvite and halite indicate that they were clearly present on two Itokawa particles before they were removed from Clean Chamber #2 at JAXA. However, there is no direct evidence for their extraterrestrial origin at present. If the sylvite and halite are extraterrestrial, their presence suggests that they may be more abundant on the surface of S‐type asteroids than previously thought.  相似文献   
83.
Among the observed circumstellar dust envelopes a certain population, planetary debris disks, is ascribed to systems with optically thin dust disks and low gas content. These systems contain planetesimals and possibly planets and are believed to be systems that are most similar to our solar system in an early evolutionary stage. Planetary debris disks have been identified in large numbers by a brightness excess in the near-infrared, mid-infrared and/or submillimetre range of their stellar spectral energy distributions. In some cases, spatially resolved observations are possible and reveal complex spatial structures. Acting forces and physical processes are similar to those in the solar system dust cloud, but the observational approach is obviously quite different: overall spatial distributions for systems of different ages for the planetary debris disks, as opposed to detailed local information in the case of the solar system. Comparison with the processes of dust formation and evolution observed in the solar system therefore helps understand the planetary debris disks. In this paper, we review our present knowledge of observations, acting forces, and major physical interactions of the dust in the solar system and in similar extra-solar planetary systems.  相似文献   
84.
Y. Kimura  K. Tamura  H. Chihara  C. Kaito 《Icarus》2005,177(1):280-285
A new method of producing pyrrhotite grains, which are most commonly found in cometary material and interplanetary dust particles, was developed. Pyrrhotite grains in the monophase having a 7C structure were predominately produced using a solid-solid reaction between iron and sulfur grains at room temperature. The characteristic infrared peaks were observed at 602, 563, and 397 cm−1 (16.6, 17.8, and 25.2 μm).  相似文献   
85.
Abstract— In this paper we report petrological and chemical data of the unusual chondritic meteorites Yamato (Y)‐792947, Y‐93408 and Y‐82038. The three meteorites are very similar in texture and chemical composition, suggesting that they are pieces of a single fall. The whole‐rock oxygen isotopes and the chemical compositions are indicative of H chondrites. In addition, the mineralogy, and the abundances of chondrule types, opaque minerals and matrices suggest that these meteorites are H3 chondrites. They were hardly affected by thermal and shock metamorphism. The degree of weathering is very low. We conclude that these are the most primitive H chondrites, H3.2–3.4 (S1), known to date. On the other hand, these chondrites contain extraordinarily high amounts of refractory inclusions, intermediate between those of ordinary and carbonaceous chondrites. The distribution of the inclusions may have been highly heterogeneous in the primitive solar nebula. The mineralogy, chemistry and oxygen isotopic compositions of inclusions studied here are similar to those in CO and E chondrites.  相似文献   
86.
87.
In the standard Friedmann cosmology the black-body radiation spectrum is usually taken (without explicit proof as far as we know) to have the same familiarT 4-form that it has in a flat space. With explicit use of the equation of motion of a quantized massless field propagating in a curved background Robertson-Walker metric we show (for the readily tractable scalar field case) that the assumption is in fact true for an open Universe. For a closed Universe, we find that there is an in principle modification to theT 4-law. Unfortunately, the correction turns out to be too small to be experimentally detectable. In passing, we also obtain a simple derivation for the cosmological red shift of frequencies.  相似文献   
88.
Highly forsteritic olivine (Fo: 99.2–99.7) in the Kaba meteorite emits bright cathodoluminescence (CL). CL spectra of red luminescent forsterite grains have two broad emission bands at approximately 630 nm (impurity center of divalent Mn ions) in the red region and above 700 nm (trivalent Cr ions) in the red–IR region. The cores of the grains show CL blue luminescence giving a characteristic broad band emission at 400 nm, also associated with minor red emissions related to Mn and Cr ions. CL color variation of Kaba forsterite is attributed to structural defects. Electron probe microanalyzer (EPMA) analysis shows concentrations of Ca, Al, and Ti in the center of the forsterite grain. The migration of diffusible ions of Mn, Cr, and Fe to the rim of the Kaba meteoritic forsterite was controlled by the hydrothermal alteration at relatively low temperature (estimated at about 250 °C), while Ca and Al ions might still lie in the core. A very unusual phase of FeO (wüstite) was also observed, which may be a terrestrial alteration product of FeNi‐metal.  相似文献   
89.
Using an X‐ray diffractometer, powder‐like diffraction patterns were acquired from in‐plane rotation of polished thin sections (PTSs) of 60 ordinary chondrites (23 H, 21 L, and 16 LL), in order to explore the thermal and shock metamorphism and its modifications of primordial features. The olivine (Ol) 130 peak position shown as Bragg indices clearly correlates with the chemical group for equilibrated ordinary chondrites (EOCs), while the peak is split or broad for unequilibrated ordinary chondrites (UOCs). The intensity ratio of kamacite may be useful for distinguishing the chemical group between H and L‐LL, but it is not definite because of heterogeneous terrestrial weathering of kamacite, especially in H chondrites. The summed intensities of the orthoenstatite (Oen) 511 and 421 peaks positively correlates with the metamorphic sequence from 3 to 6, while that of clinoenstatite (Cen) 22 is inversely correlated. The shock stage positively correlates with the summed full width of half maximum values of the Oen 511 and 421 peaks and the FWHM of Ol 130 peak for each class. Significant amount of Oen (Pbca) transformed through Cen (C2/c) finally to Cen (P21/c) is stable at high pressure for shock stage S6 (Tenham and NWA 4719). The shock melted LL chondrite is characterized by the occurrence of Cen and abundant homogeneous olivine. The effects of both thermal and shock metamorphism are thus incorporated into the bulk X‐ray diffraction (XRD) data. The bulk XRD method is useful for determining the bulk mineralogy, resulting in the classification of ordinary chondrites. The method is also applicable to samples other than PTS.  相似文献   
90.
We performed in situ oxygen three‐isotope measurements of chondrule olivine, pyroxenes, and plagioclase from the newly described CVRed chondrite NWA 8613. Additionally, oxygen isotope ratios of plagioclase in chondrules from the Kaba CV3OxB chondrite were determined to enable comparisons of isotope ratios and degree of alteration of chondrules in both CV lithologies. NWA 8613 was affected by only mild thermal metamorphism. The majority of oxygen isotope ratios of olivine and pyroxenes plot along a slope‐1 line in the oxygen three‐isotope diagram, except for a type II and a remolten barred olivine chondrule. When isotopic relict olivine is excluded, olivine, and low‐ and high‐Ca pyroxenes are indistinguishable regarding Δ17O values. Conversely, plagioclase in chondrules from NWA 8613 and Kaba plot along mass‐dependent fractionation lines. Oxygen isotopic disequilibrium between phenocrysts and plagioclase was caused probably by exchange of plagioclase with 16O‐poor fluids on the CV parent body. Based on an existing oxygen isotope mass balance model, possible dust enrichment and ice enhancement factors were estimated. Type I chondrules from NWA 8613 possibly formed at moderately high dust enrichment factors (50× to 150× CI dust relative to solar abundances); estimates for water ice in the chondrule precursors range from 0.2× to 0.6× the nominal amount of ice in dust of CI composition. Findings agree with results from an earlier study on oxygen isotopes in chondrules of the Kaba CV chondrite, providing further evidence for a relatively dry and only moderately high dust‐enriched disk in the CV chondrule‐forming region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号