首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   9篇
测绘学   4篇
大气科学   1篇
地球物理   22篇
地质学   12篇
海洋学   20篇
天文学   2篇
自然地理   3篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2012年   4篇
  2011年   10篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   5篇
  2006年   1篇
  2004年   5篇
  2002年   1篇
  2000年   1篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
61.
A detailed regional characterization of the physiography, morphology and sedimentary systems of the Central Bransfield Basin (CBB) was carried out using swath bathymetry and high‐ and very high‐resolution seismic profiles. The basin margins show continental shelves with numerous glacial troughs, and continental slopes where relatively wide and flat slope platforms represent the middle domain in an atypical physiographic scenario in glaciated margins. Although the CBB is tectonically active, most of the morphologic features are sedimentary in origin, and can be classified into four sedimentary systems: (1) glacial‐glaciomarine, composed of erosional surfaces, glacial troughs, furrows and draping sheets; (2) slope‐basin, formed by trough mouth fans, slope aprons, the Gebra‐Magia instability complex and turbidity systems; (3) seabed fluid outflow system composed of pockmark fields; and (4) contourite, composed of drifts and moats. The sedimentary systems show a clear zonation from shelf to basin and their dynamics reflects the complex interplay among glacial, glaciomarine, marine and oceanographic processes involved in the entire shelf‐to‐basin sediment distribution. The CBB morphology is primarily controlled by glacial/interglacial cyclicity and physiography and to a lesser extent by tectonics and oceanography. These factors have affected the South Shetland Islands (SSI) and Antarctic Peninsula (AP) margins differently, creating a relatively starved SSI margin and a more constructional AP margin. They have also created two entire sediment‐dispersal domains: the shelf‐to‐slope, which records the glaciation history of the CBB; and the lower slope‐to‐basin, which records the imprint of local factors. This study provides a ‘source‐to‐sink’ sedimentary scheme for glaciated margins, which may be applied to the basin research in other margins, based on the characterization of sedimentary systems, their boundaries and the linkages among them. This approach proves to be adequate for the identification of global and local factors governing the CBB and may therefore be applied to other study areas.  相似文献   
62.
Despite increasing recognition of the potential of aquatic biota to act as ‘geomorphic agents’, key knowledge gaps exist in relation to biotic drivers of fine sediment dynamics at microscales and particularly the role of invasive species. This study explores the impacts of invasive signal crayfish on suspended sediment dynamics at the patch scale through laboratory and field study. Three hypotheses are presented and tested: (1) that signal crayfish generate pulses of fine sediment mobilisation through burrowing and movement that are detectable in the flow field; (2) that such pulses may be more frequent during nocturnal periods when signal crayfish are known to be most active; and (3) that cumulatively the pulses would be sufficient to drive an overall increase in turbidity. Laboratory mesocosm experiments were used to explore crayfish impacts on suspended sediment concentrations for two treatments: clay banks and clay bed substrate. For the field study, high frequency near‐bed and mid‐flow turbidity time series from a lowland river with known high densities of signal crayfish were examined. Laboratory data demonstrate the direct influence of signal crayfish on mobilisation of pulses of fine sediment through burrowing into banks and fine bed material, with evidence of enhanced activity levels around the mid‐point of the nocturnal period. Similar patterns of pulsed fine sediment mobilisation identified under field conditions follow a clear nocturnal trend and appear capable of driving an increase in ambient turbidity levels. The findings indicate that signal crayfish have the potential to influence suspended sediment yields, with implications for morphological change, physical habitat quality and the transfer of nutrients and contaminants. This is particularly important given the spread of signal crayfish across Europe and their presence in extremely high densities in many catchments. Further process‐based studies are required to develop a full understanding of impacts across a range of river styles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
63.
64.
Rock pools can be found in inter‐tidal marine environments worldwide; however, there have been few studies exploring what drives their, fish species composition, especially in Australia. The rock‐pool environment is highly dynamic and offers a unique natural laboratory to study the habitat choices, physiological limitations and adaptations of inter‐tidal fish species. In this study rock pools of the Sydney region were sampled to determine how the physical (volume, depth, rock cover and vertical position) and biological (algal cover and predator presence) parameters of pools influence fish distribution and abundance. A total of 27 fish species representing 14 families was observed in tide pools at the four study locations. The five most abundant species were Bathygobius cocosensis, Centropogon australis, Enneapterygius atrogulare, Lepidoblennius haplodactylus and Microcanthus strigatus, which together represented 71% of the total number of fish recorded. Larger rock pools containing more algal and rock ledge cover hosted a larger and more diverse population of fish. Furthermore, certain species were only found in pools with specific characteristics, such as the presence of loose shells, a variety algae or rock cover, suggesting a high degree of habitat specificity. By contrast, some species were ubiquitous and thus can likely tolerate a wide variety of physical conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号