首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
大气科学   4篇
地球物理   4篇
地质学   22篇
海洋学   8篇
自然地理   3篇
  2018年   5篇
  2015年   1篇
  2014年   5篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   5篇
  2006年   1篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
排序方式: 共有41条查询结果,搜索用时 343 毫秒
31.
This study provides a comprehensive global analysis of the climate radiative feedbacks and the adjusted radiative forcing for a CO2 increase perturbation in the CNRM-CM5 climate model using the partial radiative perturbations (PRP) method. Some methodological key points of the PRP are investigated, with a particular focus on the consideration of the effect of fast adjustments. First, the standard PRP method is applied by neglecting certain fast adjustments. The effect of the field decorrelation is highlighted by performing a PRP across two different periods of a control experiment and by analyzing second-order terms. Sensitivity tests to the field substitution frequency, the sampling period and the perturbed experiment used are performed. The impact of the definition of the top of the climate system (top-of-the-atmosphere or tropopause) in the feedback estimate is also discussed. Secondly, the fast adjustment processes are taken into account by combining the PRP framework with the method of linear regression of the partial net radiative flux change against the mean surface air temperature change using a step forcing experiment. This method allows us to quantify the contribution of the different constituents to the forcing adjustment and to improve the estimation of the radiative feedbacks. It is shown that such decomposition allows the retrieval of the adjusted radiative forcing, the radiative feedbacks and the climate sensitivity as estimated with the linear regression method with a high level of accuracy, validating the partial decomposition.  相似文献   
32.
In basaltic dykes the magnetic lineation K1 (maximum magnetic susceptibility axis) is generally taken to indicate the flow direction during solidification of the magma. This assumption was tested in Tertiary basaltic dykes from Greenland displaying independent evidence of subhorizontal flow. The digital processing of microphotographs from thin sections cut in (K1, K2) planes yields the preferred linear orientation of plagioclase, which apparently marks the magma flow lineation. In up to 60% of cases, the angular separation between K1 and the assumed flow direction is greater than 45°. This suggests that the uncorroborated use of magnetic lineations in dykes is risky. A simple geometrical method is proposed to infer the flow vector from AMS in dykes based solely on magnetic foliations.  相似文献   
33.
The Geodynz-sud cruise on board the R/V l'Atalante collected bathymetric, side-scan sonar and seismic reflection data along the obliquely convergent boundary between the Australian and Pacific plates southwest of the South Island, New Zealand. The survey area extended from 44°05 S to 49°40 S, covering the transition zone between the offshore extension of the Alpine Fault and the Puysegur Trench and Puysegur Ridge. Based on variations in the nature and structure of the crust on either side of the margin, the plate boundary zone can be divided into three domains with distinctive structural and sedimentary characteristics. The northern domain involves subduction of probably thinned continental crust of the southern Challenger Plateau beneath the continental crust of Fiordland. It is characterized by thick sediments on the downgoing slab and a steep continental slope disrupted by fault scarps and canyons. The middle domain marks the transition between subduction of likely continental and oceanic crust defined by a series of en echelon ridges on the downgoing slab. This domain is characterized by a large collapse terrace on the continental slope which appears to be due to the collision of the en echelon ridges with the plate margin. The southern domain involves subduction of oceanic crust beneath continental and oceanic crust. This domain is characterized by exposed fabric of seafloor spreading on the downgoing slab, a steep inner trench wall and linear ridges and valleys on the Puysegur ridge crest. The data collected on this cruise provide insights into the nature and history of both plates, and factors influencing the distribution of strike-slip and compressive strain and the evolution of subduction processes along a highly oblique convergent margin.  相似文献   
34.
The ability of a dense pyroclastic flow to maintain high gas pore pressure, and hence low friction, during runout is determined by (1) the strengths and longevities of gas sources, and (2) the ability of the material to retain residual gas once those sources become ineffective. The latter is termed the gas retention capacity. Gas retention capacity in a defluidizing granular material is governed by three timescales: one for the evacuation of bubbles (t be ; brief and not considered in this paper), one for hindered settling from the expanded state (t sett), and one for diffusive release of residual pore pressure from the non-expanded state (t diff). The relative magnitides of t sett and t diff depend on bed thickness, t sett dominating in thin systems and t diff in thick ones. Three pyroclastic flow materials, two ignimbrites and a block-and-ash flow sample, were studied experimentally to investigate expansion behaviour under gas flow and to determine gas retention times. Effects of particle size were evaluated by using two size cuts (<4 mm and <250 μm) from each sample. Careful drying of the materials was necessary to avoid effects of humidity-related cohesion. Two sets of experiments were carried out: (1) expansion in the non-bubbling regime at 50–200°C, (2) bed collapse tests from the initially bubbling state at 50–550°C. Provided that gas channelling was avoided by gentle stirring, all the samples exhibited a regime of uniform expansion prior to the onset of bubbling. Fine particle size (in particular high fines content), low particle density and high temperature all favoured smoother fluidization by increasing the maximum expansion possible in the non-bubbling state. An empirical equation describing the uniform expansion of the materials was determined. High temperature also favoured greater gas partitioning into the dense phase of the bubbling bed, as well (in finer-grained samples) as higher voidage in the settled bed. Large values of t sett and t diff were favoured by fine particle size. Temperature had less influence, suggesting that experimental results at low temperatures (50–200°C) can be extrapolated to higher temperatures. Gas retention times provide insight into the ability of pyroclastic flows in expanded (t sett) or non-expanded (t diff) flow states to retain gas once air ingestion or gas production have become ineffective. Finer-grained pyroclastic flows are expected to retain gas longer, and hence to have higher apparent ‘mobilities’, than coarser-grained ones of comparable volume, as has been observed on Montserrat.  相似文献   
35.
Combined use of synchrotron-based X-ray fluorescence (SXRF), diffraction (XRD), and absorption (EXAFS) with an X-ray spot size as small as five micrometers allows us to examine noninvasively heterogeneous soils and sediments. Specifically, the speciation of trace metals at low bulk concentrations and the nature of host minerals can be probed with a level of detail unattainable by other techniques. The potential of this novel analytical approach is demonstrated by determining the Zn species in the solid phases of a pristine horizon of a clayey acidic soil (pH 4.5-5.0) having a Zn concentration of 128 mg/kg. The sample presents a differentiated fabric under the optical microscope with traces of localized manganiferous, ferriferous and argillaceous accumulations. The high chemical and textural heterogeneity of this soil offers an opportunity to identify new Zn species and to confirm the existence of others proposed from published least-squares fits of bulk averaged EXAFS spectra. As many as five to six Zn species were observed: sphalerite (ZnS), zincochromite (ZnCr2O4), Zn-containing phyllosilicate and lithiophorite, and Zn-sorbed ferrihydrite or Zn-phosphate, the results being less definitive for these two last species. Bulk EXAFS spectroscopy applied to the powdered soil indicated that Zn is predominantly associated with phyllosilicates, all other species amounting to < ∼10 to 20% of total zinc. The role of lithiophorite in the sequestration of zinc in soils had been inferred previously, but the firm identification of lithiophorite in this study serves as an excellent demonstration of the capabilities of combined micro-SXRF/XRD/EXAFS measurements. The micro-EXAFS spectrum collected in an area containing only phyllosilicates could not be simulated assuming a single Zn structural environment. Two distinct octahedrally-coordinated crystallographic sites (i.e., two EXAFS components) were considered: one site located within the phyllosilicate structure (isomorphic cationic substitution in the octahedral sheet) and another in the interlayer region in the form of a Zn-sorbed hydroxy-Al interlayered species. This second subspecies is less certain and further investigation of the individual EXAFS spectrum of this component is needed to precise its exact nature and the uptake mechanism of zinc in it.  相似文献   
36.
Multibeam echosounders are becoming widespread for the purposes of seafloor bathymetry mapping, but the acquisition and the use of seafloor backscatter measurements, acquired simultaneously with the bathymetric data, are still insufficiently understood, controlled and standardized. This presents an obstacle to well-accepted, standardized analysis and application by end users. The Marine Geological and Biological Habitat Mapping group (Geohab.org) has long recognized the need for better coherence and common agreement on acquisition, processing and interpretation of seafloor backscatter data, and established the Backscatter Working Group (BSWG) in May 2013. This paper presents an overview of this initiative, the mandate, structure and program of the working group, and a synopsis of the BSWG Guidelines and Recommendations to date. The paper includes (1) an overview of the current status in sensors and techniques available in seafloor backscatter data from multibeam sonars; (2) the presentation of the BSWG structure and results; (3) recommendations to operators, end-users, sonar manufacturers, and software developers using sonar backscatter for seafloor-mapping applications, for best practice methods and approaches for data acquisition and processing; and (4) a discussion on the development needs for future systems and data processing. We propose for the first time a nomenclature of backscatter processing levels that affords a means to accurately and efficiently describe the data processing status, and to facilitate comparisons of final products from various origins.  相似文献   
37.
Using automated supervised segmentation of multibeam backscatter data to delineate seafloor substrates is a relatively novel technique. Low-frequency multibeam echosounders (MBES), such as the 12-kHz EM120, present particular difficulties since the signal can penetrate several metres into the seafloor, depending on substrate type. We present a case study illustrating how a non-targeted dataset may be used to derive information from multibeam backscatter data regarding distribution of substrate types. The results allow us to assess limitations associated with low frequency MBES where sub-bottom layering is present, and test the accuracy of automated supervised segmentation performed using SonarScope® software. This is done through comparison of predicted and observed substrate from backscatter facies-derived classes and substrate data, reinforced using quantitative statistical analysis based on a confusion matrix. We use sediment samples, video transects and sub-bottom profiles acquired on the Chatham Rise, east of New Zealand. Inferences on the substrate types are made using the Generic Seafloor Acoustic Backscatter (GSAB) model, and the extents of the backscatter classes are delineated by automated supervised segmentation. Correlating substrate data to backscatter classes revealed that backscatter amplitude may correspond to lithologies up to 4 m below the seafloor. Our results emphasise several issues related to substrate characterisation using backscatter classification, primarily because the GSAB model does not only relate to grain size and roughness properties of substrate, but also accounts for other parameters that influence backscatter. Better understanding these limitations allows us to derive first-order interpretations of sediment properties from automated supervised segmentation.  相似文献   
38.
Pressure variations in a magma reservoir may cause deformation at the surface and a redistribution of the stress in the surrounding rock. In this study, we use two‐dimensional numerical models and elaborate how magma chamber inflation and deflation affect the stress field around and surface displacement. We test how a pre‐existing normal fault near the magma reservoir may influence the pattern of stress. We demonstrate the possibility of initiating both normal and reverse slip on faults during the inflation of the magma reservoir. The Coulomb failure stress changes are calculated during the periods of pressure variation. An increase of Coulomb failure stress can be predicted above and below the magma chamber during increasing magma chamber pressure that may encourage earthquakes. This process can produce cracks and fault growth encouraging magma propagation along the cracked zone. A different distribution of the stress change is expected in the case of subsequent deflation of the overpressured magma reservoir. In this case, seismicity is expected on a plane at equal depth than the magma chamber, laterally offset from the extent of the magma chamber. Magma could propagate laterally from the magma reservoir into zones where cracks have been generated, but only if the resolved shear stress on the fault is small compared with the excess magma pressure.  相似文献   
39.
The southern Kermadec-Hikurangi convergent margin, east of New Zealand, accommodates the oblique subduction of the oceanic Hikurangi Plateau at rates of 4–5 cm/yr. Swath bathymetry and sidescan data, together with seismic reflection and geopotential data obtained during the GEODYNZ-SUD cruise, showed major changes in tectonic style along the margin. The changes reflect the size and abundance of seamounts on the subducting plateau, the presence and thickness of trench-fill turbidites, and the change to increasing obliquity and intracontinental transpression towards the south. In this paper, we provide evidence that faulting with a significant strike-slip component is widespread along the entire 1000 km margin. Subduction of the northeastern scrap of the Hikurangi Plateau is marked by an offset in the Kermadec Trench and adjacent margin, and by a major NW-trending tear fault in the scarp. To the south, the southern Kermadec Trench is devoid of turbidite fill and the adjacent margin is characterized by an up to 1200 m high scarp that locally separates apparent clockwise rotated blocks on the upper slope from strike-slip faults and mass wasting on the lower slope. The northern Hikurangi Trough has at least 1 km of trench-fill but its adjacent margin is characterized by tectonic erosion. The toe of the margin is indented by 10–25 km for more than 200 km, and this is inferred to be the result of repeated impacts of the large seamounts that are abundant on the northern Hikurangi Plateau. The two most recent impacts have left major indentations in the margin. The central Hikurangi margin is characterized by development of a wide accretionary wedge on the lower slope, and by transpression of presubduction passive margin sediments on the upper slope. Shortening across the wedge together with a component of strike-slip motion on the upper slope supports an interpretation of some strain partitioning. The southern Hikurangi margin is a narrow, mainly compressive belt along a very oblique, apparently locked subduction zone.  相似文献   
40.
The mineralogy of natural ferromanganese coatings on quartz grains and the crystal chemistry of associated trace elements Ni, Zn, Ba, and As were characterized by X-ray microfluorescence, X-ray diffraction, and EXAFS spectroscopy. Fe is speciated as ferrihydrite and Mn as vernadite. The two oxides form alternating Fe- and Mn-rich layers that are irregularly distributed and not always continuous. Unlike naturally abundant Fe-vernadite, in which Fe and Mn are mixed at the nanoscale, the ferrihydrite and vernadite are physically segregated and the trace elements clearly partitioned at the microscopic scale. Vernadite consists of two populations of interstratified one-water layer (7 Å phyllomanganate) and two-water layer (10 Å phyllomanganate) crystallites. In one population, 7 Å layers dominate, and in the other 10 Å layers dominate. The three trace metals Ni, Zn, and Ba are associated with vernadite and the metalloid As with ferrihydrite. In vernadite, nickel is both substituted isomorphically for Mn in the manganese layer and sorbed at vacant Mn layer sites in the interlayer. The partitioning of Ni is pH-dependent, with a strong preference for the first site at circumneutral pH and for the second at acidic pH. Thus, the site occupancy of Ni in vernadite may be an indicator of marine vs. continental origin, and in the latter, of the acidity of streams, lakes, or soil pore waters in which the vernadite formed. Zinc is sorbed only in the interlayer at vacant Mn layer sites. It is fully tetrahedral at a Zn/Mn molar ratio of 0.0138, and partly octahedral at a Zn/Mn ratio of 0.1036 consistent with experimental studies showing that the VIZn/IVZn ratio increases with Zn loading. Barium is sorbed in a slightly offset position above empty tetrahedral cavities in the interlayer. Arsenic tetrahedra are retained at the ferrihydrite surface by a bidentate-binuclear attachment to two adjacent iron octahedra, as commonly observed. Trace elements in ferromanganese precipitates are partitioned at a few, well-defined, crystallographic sites that have some elemental specificity, and thus selectivity. The relative diversity of sorption sites contrasts with the simplicity of the layer structure of vernadite, in which charge deficit arises only from Mn4+ vacancies (i.e., no Mn3+ for Mn4+ substitution). Therefore, sorption mechanisms primarily depend on physical and chemical properties of the sorbate and competition with other ions in solution, such as protons at low pH for Ni sorption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号