首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2543篇
  免费   50篇
  国内免费   29篇
测绘学   48篇
大气科学   148篇
地球物理   646篇
地质学   838篇
海洋学   269篇
天文学   441篇
综合类   10篇
自然地理   222篇
  2021年   24篇
  2020年   33篇
  2019年   30篇
  2018年   46篇
  2017年   39篇
  2016年   69篇
  2015年   49篇
  2014年   69篇
  2013年   130篇
  2012年   69篇
  2011年   126篇
  2010年   91篇
  2009年   112篇
  2008年   92篇
  2007年   103篇
  2006年   98篇
  2005年   98篇
  2004年   84篇
  2003年   60篇
  2002年   80篇
  2001年   46篇
  2000年   45篇
  1999年   51篇
  1998年   30篇
  1997年   35篇
  1996年   39篇
  1995年   45篇
  1994年   39篇
  1993年   32篇
  1992年   26篇
  1991年   36篇
  1990年   28篇
  1989年   30篇
  1988年   39篇
  1987年   30篇
  1986年   29篇
  1985年   39篇
  1984年   42篇
  1983年   46篇
  1982年   32篇
  1981年   37篇
  1980年   32篇
  1979年   35篇
  1978年   28篇
  1977年   34篇
  1976年   34篇
  1975年   29篇
  1973年   20篇
  1972年   24篇
  1971年   18篇
排序方式: 共有2622条查询结果,搜索用时 28 毫秒
961.
In the polder region of coastal Bangladesh, shallow groundwater is primarily brackish with unpredictable occurrence of freshwater pockets. Delta building processes, including the codeposition of fresh-to-saline porewater and sediments, have formed the shallow aquifer. Impermeable clay facies and the lack of a topographical gradient limit the flow of groundwater and its mixing with surface water so controls on spatial variability of salinity are not obvious. By characterizing groundwater-surface water (GW-SW) interactions, this study attempted to identify areas of potable groundwater for the polder communities. We used transects of piezometers, cores, electromagnetic induction, and water chemistry surveys to explore two sources of potential fresh groundwater: (1) tidal channel-aquifer exchange and (2) meteoric recharge. Fresh groundwater proved difficult to find due to heterogeneous subsurface lithology, asymmetrical tidal dynamics, extreme seasonal fluctuations in rainfall, and limited field data. Geophysical observations suggest substantial lateral variability in shallow subsurface conductivity profiles. Piezometers show varying degrees of tidal pressure attenuation away from the channels. Nevertheless, the active exchange of freshwater appears to be limited due to low permeability of banks and surface sediments. Results indicate that pockets of fresh groundwater cannot be identified using readily available hydrogeological methods, so alternative drinking water sources should be pursued. By better understanding the hydrogeology of the system, however, communities will be better equipped to redirect water management resources to more feasible and sustainable drinking water options.  相似文献   
962.
Investigating changes in an aquifer system often involves comparison of observed heads from different synoptic measurements, generally with potentiometric surfaces developed by hand or a statistical approach. Alternatively, head‐specified MODFLOW models, in which constant head cells simulate observed heads, generate gridded potentiometric surfaces that explicitly account for Darcy's Law and mass balance. We developed a transient head‐specified MODFLOW model for the stratified Cambrian‐Ordovician sandstone aquifer system of northeastern Illinois to analyze flow within its 275 m deep cone of depression. Potentiometric surfaces were developed using static heads from production wells regardless of open interval; hence assuming no vertical head difference. This assumption was tested against steady‐state, head‐specified models of each sandstone strata for 1980 and 2014. The results indicate that the original conceptual model was appropriate in 1980 but not 2014, where a vertical head difference had developed at the center of the cone of depression. For earlier years, when the head difference was minimal, the transient head‐specified model compared well with a traditional, flow‐specified model. In later years, the transient head‐specified model overestimated removal of water from storage. MODFLOW facilitates the development of a time‐series of potentiometric surfaces and can easily be modified to test the impacts of different conceptual models, such as assumptions on vertical head differences. For this study of a deep confined aquifer, MODFLOW also offers advantages in generating potentiometric surfaces and flow fields over statistical interpolation techniques, although future research is needed to assess its performance in other settings.  相似文献   
963.
Forecasting the state of large marine ecosystems is important for many economic and public health applications. However, advanced three-dimensional (3D) ecosystem models, such as the European Regional Seas Ecosystem Model (ERSEM), are computationally expensive, especially when implemented within an ensemble data assimilation system requiring several parallel integrations. As an alternative to 3D ecological forecasting systems, we propose to implement a set of regional one-dimensional (1D) water-column ecological models that run at a fraction of the computational cost. The 1D model domains are determined using a Gaussian mixture model (GMM)-based clustering method and satellite chlorophyll-a (Chl-a) data. Regionally averaged Chl-a data is assimilated into the 1D models using the singular evolutive interpolated Kalman (SEIK) filter. To laterally exchange information between subregions and improve the forecasting skills, we introduce a new correction step to the assimilation scheme, in which we assimilate a statistical forecast of future Chl-a observations based on information from neighbouring regions. We apply this approach to the Red Sea and show that the assimilative 1D ecological models can forecast surface Chl-a concentration with high accuracy. The statistical assimilation step further improves the forecasting skill by as much as 50%. This general approach of clustering large marine areas and running several interacting 1D ecological models is very flexible. It allows many combinations of clustering, filtering and regression technics to be used and can be applied to build efficient forecasting systems in other large marine ecosystems.  相似文献   
964.
Ocean Dynamics - We investigate the hypothesis by Winterwerp and Wang (Ocean Dyn 63:1279–1292, 2013) that channel deepening in the Scheldt River Estuary could lead to a large increase in...  相似文献   
965.
Kumar  V. Sanil  George  Jesbin  Dora  Udhaba  Naseef  Muhammed 《Ocean Dynamics》2019,69(1):29-42
Ocean Dynamics - Directional wave data collected in the coastal area at 10-m water depth for a period of 1 year is used to describe the surface wave dynamics off Mumbai coast. Partitioning...  相似文献   
966.
A mass reduction concept for seismic hazard mitigation is investigated herein. The proposed method is implemented through floating slabs, ie, slabs that have been seismically isolated from the skeleton of the structure. The investigation is based on time history analyses of MDOF models under scaled strong-motion seismic records complying with an EC8 spectrum. The purpose of these slabs is twofold; for selected short isolation periods, they act as a mass-damping system for the overall response of the structure, employing significantly more mass than traditional TMDs, while for longer isolation periods they provide seismic protection on their contents while effectively reducing the seismic mass of the structure. In the latter case, it is found that the response of the skeleton can be evaluated accurately from a corresponding reduced-mass model. The proposed design method does not necessarily aim at replacing existing seismic design approaches; it rather provides design versatility in the hands of the practicing engineers.  相似文献   
967.
This paper describes an investigation of the subfault distribution along the Japan–Kuril–Kamchatka subduction zone for the implementation of a far-field tsunami forecast algorithm. Analyses of seismic data from 1900 to 2000 define the subduction zone, which in turn is divided into 222 subfaults based on the fault characteristics. For unit slip of the subfaults, a linear long-wave model generates a database of mareograms at water-level stations along the subduction zone and at warning points in the North Pacific. When a tsunami occurs, an inverse algorithm determines the slip distribution from near-source water-level records and predicts the waveforms at the warning points using the pre-computed mareograms. A jackknife resampling scheme uses combinations of input water-level records to provide a series of waveform predictions for the computation of the confidence-interval bounds. The inverse algorithm is applied to hindcast two major tsunamis generated from the Japan–Kuril–Kamchatka source and the computed tsunami heights show good agreement with recorded water-level data.  相似文献   
968.
Holocene sedimentation patterns and environmental development in Aarhus Bay, Denmark, were reconstructed based on proxy analyses of two sediment cores (M1 and M5). Together, the two cores offer an opportunity to examine the history of the area during the past c. 10 000 years. The investigation consisted of acoustic mapping and multi-proxy analyses of the sediment cores including macrofossils, sediment physical properties, sediment accumulation rates, grain size, and X-ray fluorescence elemental counts. Radiocarbon dating of the two sediment successions revealed that they cover the periods c. 10 000–3700 cal. a BP (M1) and c. 4400 cal. a BP to the present (M5). The data from the M1 site indicate the presence of a near-shore lake environment between c. 10 000 and 9000 cal. a BP. The first intrusion of marine water into the area is dated to c. 9000 cal. a BP. In the following c. 1300 years, brackish-water conditions prevailed in the area characterized by a mixture of taxa from marine, limnic and terrestrial habitats, reflecting a shallow estuarine environment. Around 7700 cal. a BP full marine conditions were established, accompanied by a marked increase in sedimentation rates. The changes to full marine conditions and higher sedimentation rates are probably due to a significant sea-level rise leading to flooding of former land areas and intensified erosion. A subsequent distinct decrease in sedimentation rates around 6350 cal. a BP is presumably linked to a previously documented sea-level drop about this time. Continuous sedimentation ceased around 3700 cal. a BP in the central part of the bay, most probably due to a major sea-level lowering involving widespread erosion. In the eastern and deeper part of the bay, sedimentation continued until today. Fully marine conditions prevailed there for at least the last 4400 years.  相似文献   
969.
The spatial distribution of source areas and associated residence times of water in the catchment are significant factors controlling the annual cycles of dissolved organic carbon (DOC) concentration in Deer Creek (Summit County, Colorado). During spring snowmelt (April–August 1992), stream DOC concentrations increased with the rising limb of the hydrograph, peaked before maximum discharge, then declined rapidly as melting continued. We investigated catchment sources of DOC to streamflow, measuring DOC in tension lysimeters, groundwater wells, snow and streamflow. Lysimeter data indicate that near-surface soil horizons are a primary contributor of DOC to streamflow during spring snowmelt. Concentrations of DOC in the lysimeters decrease rapidly during the melt period, supporting the hypothesis that hydrological flushing of catchment soils is the primary mechanism affecting the temporal variation of DOC in Deer Creek. Time constants of DOC flushing, characterizing the exponential decay of DOC concentration in the upper soil horizon, ranged from 10 to 30 days for the 10 lysimeter sites. Differences in the rate of flushing are influenced by topographical position, with near-stream riparian soils flushed more quickly than soils located further upslope. Variation in the amount of distribution of accumulated snow, and asynchronous melting of the snowpack across the landscape, staggered the onset of the spring flush throughout the catchment, prolonging the period of increased concentrations of DOC in the stream. Streamflow integrates the catchment-scale flushing responses, yielding a time constant associated with the recession of DOC in the stream channel (84 days) that is significantly longer than the time constants observed for particular locations in the upper soil. © 1997 John Wiley & Sons, Ltd.  相似文献   
970.
Finite element modelling of the saturated–unsaturated surface–subsurface flow mechanisms operative in a small salinized catchment in south‐western Australia was used to help define the flow system and explain the causes of waterlogging and salinization there. Data available at the site from a previous study were used to obtain a first approximation to the flow system. Altering the properties of some of the strata gave a closer calibration. It was found that the modelled saturated hydraulic conductivity of the B horizon in the duplex soil zone needed to be at least an order of magnitude lower than that measured in order to reproduce the perching conditions observed in the field. Also, the model indicated the influence of a doleritic dyke, whose presence was confirmed by field measurement. Our analysis showed that there were two main flow systems operating in the hillslope. The first, and most dominant, was the recharge occurring through the upslope gradational soil zone and percolating down to both the deeply weathered regolith and the basal aquifer. The second flow system is an unsaturated flow system operating in the high permeability A horizon in the downslope duplex soil zone. The first system is primarily responsible for the saline seepage zone in the valley bottom. The second contributes to the waterlogging and perching occurring upslope of the seepage zone. Vertical flow through the higher permeability B horizon in the gradational soil zone in the upper slopes is a major contributor of recharge. Recharge by flow through macropores occurs where, but only where, perched aquifers develop and allow the macropores to be activated. Areas with perched aquifers occurred in downslope locations and near a doleritic dyke located upslope. Thus, the area where macropore recharge occurred was not large. The recharge rate required to maintain the piezometric levels at present values is only about 30 mm/yr (about 5% of the annual rainfall). The piezometric levels under the upper part of the catchment varied greatly with only small changes in recharge rate. A 50% reduction in recharge rate had the effect of reducing the length of the seepage zone at the end of winter by 40%. Changes in recharge rate had little effect on the extent of the perched aquifer at the end of winter. Deep‐rooted perennial forages, shrubs or trees on the gradational soil zone in the upper part of the catchment and on the zones upslope of geological barriers to flow would be required to reduce the recharge and to allow for rehabilitation of the saline valley floor. Waterlogging associated with the perched water table in the bottom part of the catchment would be best addressed by tree plantations located just upslope of the salinized zone in the valley floor. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号