首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   216篇
  免费   6篇
  国内免费   1篇
测绘学   14篇
大气科学   11篇
地球物理   39篇
地质学   120篇
海洋学   16篇
天文学   11篇
自然地理   12篇
  2020年   4篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   7篇
  2013年   9篇
  2012年   9篇
  2011年   20篇
  2010年   7篇
  2009年   14篇
  2008年   7篇
  2007年   9篇
  2006年   10篇
  2005年   8篇
  2004年   5篇
  2003年   5篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1987年   4篇
  1986年   5篇
  1985年   3篇
  1984年   7篇
  1983年   3篇
  1982年   6篇
  1979年   7篇
  1978年   4篇
  1977年   3篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1966年   2篇
  1964年   2篇
  1959年   1篇
  1956年   1篇
  1946年   1篇
排序方式: 共有223条查询结果,搜索用时 187 毫秒
131.
Rip currents are fast moving, offshore flows that have the ability to move even the strongest swimmers into deeper waters. Miami Beach, Florida is one of the most visited beaches in the USA and a sought after destination for citizens and international tourists alike. It is also known to be a rip current “hot spot.” These factors greatly increase the risk of drowning; however, no previous research has focused on beachgoer perception of rip-related risks in South Florida. Over a 12-month period, 203 public surveys were collected to determine the rip current knowledge of beachgoers at Miami Beach based on factors such as swimming ability and frequency of beach visits. The responses were analyzed by constructing a normalized component factor to determine the respondent’s comprehensive knowledge of rips, and multiple regression models were used to assess the net influences of sociodemographic and behavioral characteristics on the responses. A significant proportion of the survey respondents showed insufficient knowledge, indicating they are at risk of drowning in a rip current. Frequent beachgoer’s exposure to the beach environment, maturation, and nativity is identified as the main contributors to knowledge net of other sociodemographic compositions. The most at-risk groups were determined to be young adults, foreign tourists, poor swimmers, and those who infrequently visited the beach. Miami Beach needs to initiate a rip current safety campaign to target these at-risk beachgoers, where interventions beyond familial and educational institutions should be introduced.  相似文献   
132.
The El Laco magnetite deposits consist of more than 98 % magnetite but show field textures remarkably similar to mafic lava flows. Therefore, it has long been suggested that they represent a rare example of an effusive Fe oxide liquid. Field and petrographic evidence, however, suggest that the magnetite deposits represent replacement of andesite flows and that the textures are pseudomorphs. We determined the trace element content of magnetite by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) from various settings at El Laco and compared them with magnetite from both igneous and hydrothermal environments. This new technique allows us to place constraints on the conditions under which magnetite in these supposed magnetite “lava flows” formed. The trace element content of magnetite from the massive magnetite samples is different to any known magmatic magnetite, including primary magnetite phenocrysts from the unaltered andesite host rocks at El Laco. Instead, the El Laco magnetite is most similar in composition to hydrothermal magnetite from high-temperature environments (>500 °C), such as iron oxide-copper-gold (IOCG) and porphyry-Cu deposits. The magnetite trace elements from massive magnetite are characterised by (1) depletion in elements considered relatively immobile in hydrothermal fluids (e.g. Ti, Al, Cr, Zr, Hf and Sc); (2) enrichment in elements that are highly incompatible with magmatic magnetite (rare earth elements (REE), Si, Ca, Na and P) and normally present in very low abundance in magmatic magnetite; (3) high Ni/Cr ratios which are typical of magnetite from hydrothermal environments; and (4) oscillatory zoning of Si, Ca, Mg, REE and most high field strength elements, and zoning truncations indicating dissolution, similar to that formed in hydrothermal Fe skarn deposits. In addition, secondary magnetite in altered, brecciated host rock, forming disseminations and veins, has the same composition as magnetite from the massive lenses. Euhedral magnetite lining both open-spaced veins in the brecciated host rock and along the walls of large, hollow chimneys in the massive magnetite lenses also displays oscillatory zoning and most likely formed by fluctuating composition and/or physio-chemical conditions of the fluid. Thus, the chemical fingerprint of magnetite from the supposed El Laco magnetite lava flows supports the hydrothermal model of metasomatic replacement of andesite lava flows, by dissolution and precipitation of magnetite from high-temperature fluids, rather than a magmatic origin from an effusive Fe oxide liquid.  相似文献   
133.
134.
135.
136.
The geological structures of the eastern Calabrian Apenninic front within the Gulf of Taranto, southern Italy, are compared to those of a convergent margin, using simple criteria such as the origin and volume of the sediment supply, and the relative ratio between sediments carried by the sinking plate and those directly supplied by the overriding margin. Based on this criteria we distinguish four main types of sedimentary accretion occurring at convergent continental margins: (a) Pacific type, (b) Indonesian type, (c) Caribbean type, and (d) Apenninic type.  相似文献   
137.
The South Pandora and the Tripartite Ridges are active spreading centers located in the northern part of the North Fiji Basin. These spreading centers were surveyed over a distance of 750 km during the NOFI cruise of R/V L'Atalante (August–September 1994) which was conducted in the frame of the french-japanese Newstarmer cooperation project. SIMRAD EM12-dual full coverage swath bathymetric and imagery data as well as airgun 6-channel seismic, magnetics and gravity profiles were recorded along and offaxis from 170°40 E to 178° E. Dredging and piston coring were also performed along and off-axis. The axial domain of the South Pandora Ridge is divided into 5 first-order segments characterized by contrasted morphologies. The average width of the active domain is 20 km and corresponds either to bathymetric highs or to deep elongated grabens. The bathymetric highs are volcanic constructions, locally faulted and rifted, which can obstruct totally the axial valley. The grabens show the typical morphology of slow spreading axes, with two steep walls flanking a deep axial valley. Elongated lateral ridges may be present on both sides of the grabens. Numerous volcanoes, up to several kilometers in diameter, occur on both flanks of the South Pandora Ridge. The Tripartite Ridge consists of three main segments showing a sigmoid shape. Major changes in the direction of the active zones are observed at the segment discontinuities. These discontinuities show various geometrical patterns which suggest complex transform relay zones. Preliminary analysis of seismic reflection profiles suggest that the Tripartite Ridge is a very young feature which propagates into an older oceanic domain characterized by a significant sedimentary cover. By contrast, a very thin to absent sedimentary cover is observed about 100 km on both flanks of the South Pandora Ridge active axis. The magnetic anomaly profiles give evidence of long and continuous lineations, parallel to the South Pandora Ridge spreading axis. According to our preliminary interpretation, the spreading rate would have been very low (8 km/m.y. half rate) during the last 7 Ma. The South Pandora and Tripartite Ridges exhibit characteristics typical of active oceanic ridges: (1) a segmented pattern, with segments ranging from 80 to 100 km in length; (2) an axial tectonic and volcanic zone, 10 to 20 km wide; (3) well-organized magnetic lineations, parallel to the active axis; (4) clear signature on the free-air gravity anomaly map. However, no typical transform fault is observed; instead, complex relay zones are separating first-order segments.  相似文献   
138.
139.
Sedimentation processes occurring in an active convergent setting are well illustrated in the Lesser Antilles island arc. The margin is related to westward subduction of the North and/or the South America plates beneath the Caribbean plate. From east to west, the arc can be subdivided into several tectono-sedimentary depositional domains: the accretionary prism, the fore-arc basin, the arc platform and inter-arc basin, and the Grenada back-arc basin. The Grenada back-arc basin, the fore-arc basin (Tobago Trough) and the accretionary prism on the east side of the volcanic arc constitute traps for particles derived from the arc platform and the South American continent. The arc is volcanically active, and provides large volumes of volcaniclastic sediments which accumulate mainly in the Grenada basin by volcaniclastic gravity flows (volcanic debris avalanches, debris flows, turbiditic flows) and minor amounts by fallout. By contrast, the eastern side of the margin is fed by ash fallout and minor volcaniclastic turbidites. In this area, the dominant component of the sediments is pelagic in origin, or derived from South America (siliciclastic turbidites). Insular shelves are the locations of carbonate sedimentation, such as large platforms which develop in the Limestone Caribbees in the northern part of the margin. Reworking of carbonate material by turbidity currents also delivers lesser amounts to eastern basins of the margin. This contrasting sedimentation on both sides of the arc platform along the margin is controlled by several interacting factors including basin morphology, volcanic productivity, wind and deep-sea current patterns, and sea-level changes. Basin morphology appears to be the most dominant factor. The western slopes of the arc platform are steeper than the eastern ones, thus favouring gravity flow processes.  相似文献   
140.
    
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号