首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   0篇
大气科学   1篇
地球物理   3篇
地质学   40篇
天文学   21篇
自然地理   1篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   5篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   5篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1977年   1篇
  1975年   3篇
  1974年   4篇
  1972年   2篇
  1971年   1篇
  1965年   1篇
排序方式: 共有66条查询结果,搜索用时 578 毫秒
21.
Carbon isotope data have been obtained for diamonds in diamondites (framesites, polycrystalline diamond) of unknown origin (presumably from southern Africa), which contain minor amounts of garnet (plus rare clinopyroxene). The carbon isotope abundance ratios show wide inter- and intra-sample ranges. The δ13C variations of diamonds from diamondites with “peridotitic” or “eclogitic” garnets are indistinguishable from each other, with a range from −3.2 to −27.9‰, and a peak around −18‰, indicating a depletion in 13C relative to most silicate-bearing single crystal diamonds. This 13C depletion could have been produced by mass fractionation of C from an isotopically homogeneous mantle source in a C-O-H fluid system. Fluids traveling between regions of varying redox conditions in the mantle could have provided the necessary vehicle. The variations of δ13C can be explained by different degrees of oxidation during the fluid/melt ascent.  相似文献   
22.
We report a detailed petrography, mineral chemistry, and trace element study of MaTroc, a large calcium-aluminum-rich inclusion (CAI) (5 × 2.5 mm) of irregular triangular shape. The inclusion has a zonal structure: The core consists of a porous plagioclase-olivine-Ca-rich pyroxene intergrowth with subordinate apatite. Its texture is meta-gabbro-like, similar to other plagioclase-olivine inclusions (POIs). The mantle has variable thickness (0.1-1.5 mm) and consists of a compact symplectitic intergrowth of spinel (hercynite) and plagioclase with abundant dispersed magnetite, subordinate Ca-rich pyroxene, and traces of sulfides. The thin (5-50 μm) discontinuous crust of MaTroc consists mainly of plagioclase with some olivine and magnetite.The Mg-Fe phases of MaTroc are Fe-rich: olivine has Fa33.2 and high NiO content, similar to that in the host rock, Ca-rich pyroxene has much lower TiO2 and Cr2O3 contents than that of the host chondrite, and plagioclase is An55-An74. Magnetites have variable compositions, are poorer in Al2O3 and Cr2O3 and richer in NiO than those in the host. Spinels have also variable compositions, rich in FeO, NiO, and ZnO.Despite their different mineralogy, both core and mantle have bulk trace element abundances similar to those in average group II CAIs. However, the mantle is richer in Nb and U and poorer in Eu, Be, B, Sr, and Li than the core. All minerals have high trace element contents. Minerals in the core show signs of incomplete equilibration of trace elements within and between them. Mantle minerals are far from equilibrium with each other and the bulk system. Spinel and anorthite carry the trace element signature of their precursor melilite (or hibonite), and magnetite contains large amounts of a heterogeneously distributed remnant extremely rich in trace elements (“obscurite”), possibly of a former perovskite.Inclusion MaTroc has a complex history. The POI core probably formed by reaction of an unknown precursor(s) of condensation origin with a vapor to form olivine, plagioclase, clinopyroxene, apatite, and (an) unknown phase(s) that vanished, leaving abundant void space. The spinel-rich mantle is also a secondary mineral assemblage that formed by breakdown of and solid-vapor reactions with a precursor or precursors, possibly melilite (or hibonite). The abundant magnetite formed by reaction of perovskite with an oxidizing vapor and by precipitation from such a vapor. All phases of the inclusion experienced the metasomatic addition of Fe, Ni, and moderately volatile elements such as V, Be, Li, Cr, and Mn—similar to all other constituents of the Maralinga CK chondrite. Phases in MaTroc and in the host rock are close to equilibrium in the distribution of Fe, Mg, Ni, and Mn but far from equilibrium in the distribution of M+3 and M+4 ions. The minor and trace element abundances in the magnetite of the host rock and of MaTroc preclude an origin by oxidation of a metal precursor.  相似文献   
23.
Summary ?Silicates intergrown with diamonds from 10 diamondites (polycrystalline diamonds, framesites) have been analysed for trace element contents by laser ablation ICP-MS. The diamondites are fine- (< 100 μm) to coarse-grained (> 1 mm) rocks with abundant pores and cavities. The walls of the open cavities are covered by euhedral diamond crystals. Silicates (commonly garnets) are mostly interstitial or occupy the space in cavities and often contain inclusions of euhedral diamonds. Four diamondites contain lilac “peridotitic” garnets with low CaO contents (3.6–5.7 wt%), high Mg-numbers (0.83–0.84) and high Cr2O3 contents (3.9–6.4 wt%). Occasionally, they are accompanied by Cr-diopside. “Peridotitic” garnets have heavy rare earth element-enriched and light rare earth element-depleted chondrite-normalised patterns, occasionally with a small hump at Eu and Sm. The remaining six diamondites contain orange coloured “eclogitic” garnets with low Cr2O3 contents (< 1 wt%). “Eclogitic” garnets can be divided into two subgroups: E-I garnets have high Mg-numbers (0.84–0.85, as high as those of the “peridotitic” garnets) and higher Cr2O3 and TiO2 and lower heavy rare earth element contents than the E-II garnets. The chondrite-normalised trace element patterns of the two subgroups of “eclogitic” garnets are similar to each other, all are depleted in light rare earth elements with respect to the heavy rare earth elements and show significant positive anomalies of Zr and Hf. “Eclogitic” garnets are more depleted in highly incompatible elements (light rare earth elements, Nb and Ta) than the “peridotitic” garnets. Diamondites and their silicates very likely crystallised from a fluid phase. The trace element contents of the hypothetical fluids in equilibrium with the “peridotitic” garnets are similar to the trace element contents of kimberlitic and carbonatitic liquids. Thus, crystallisation of these diamondites from a highly alkaline liquid in the presence of carbonates can be suggested. Hypothetical melts in equilibrium with “eclogitic” garnets are highly magnesian but depleted in light rare earth elements and other highly incompatible elements relative to the typical kimberlitic, lamproitic or carbonatitic liquids. This is an unexpected result because eclogites are richer in trace elements than peridotites and fluids in equilibrium with these rocks should reflect this. The different trace element contents of fluids which precipitated, beside diamonds, “peridotitic” and “eclogitic” garnets, respectively, therefore, must be the result of differences in the properties of these fluids rather then of different source rocks, as was already suspected by Kurat and Dobosi (2000). Received October 27, 2000; revised version accepted December 29, 2001  相似文献   
24.
Summary Nakhla augite and olivine grains commonly contain glass-bearing inclusions. In contrast to olivines, augites host only one type of multiphase inclusions which consists of euhedral to subhedral augite, Ti-magnetite and pigeonite plus silica-rich glass and a bubble. No fractures surround these inclusions, making it likely that they are of a pristine composition. Heating experiments with a final temperature of 1150 °C were done for the first time with Nakhla augite inclusions. During heating the glass melted and crystals inside the inclusions were dissolved in the melt whereby its chemical composition changed. The quenched glass is poorer in SiO2 and Al2O3 and richer in CaO, FeO and MgO compared to unheated inclusion glass. Our in situ analyses allowed us to estimate the initial composition of a liquid co-existing with Nakhla augite at 1150 °C and 1 atm pressure. Several features of Nakhla, such as the high Fe/Mg ratio of the augite, which is out of equilibrium with the glass, the highly variable alkali content and the Na/K ratio of the glasses are incompatible with the standard model that states that SNC meteorites are all igneous rocks formed from basaltic magmas. Our results on re-melted glasses suggest a more complex and possibly non-magmatic genesis of Nakhla. Both types of glass-bearing inclusions (those hosted by augite or olivine) could represent heterogeneously trapped mineral + glass inclusions. Those hosted by augites mimic at least in part parental melt inclusions. However, the quenched glass is out of equilibrium with the host with respect to the Fe/Mg ratio and has too much compositional variation to be representative of a parental melt.
Zusammenfassung Glasführende Einschlüsse im Augit von Nakhla (SNC-Meteorit): Heterogeneingeschlossene Phasen Augite und Olivine im Achondriten Nakhla enthalten h?ufig glasführende Einschlüsse. Im Gegensatz zu den Olivinen enthalten die Augite nur einen Typ Multiphasen-Einschlu?, welcher aus idiomorphem bis subidiomorphem Augit, Ti-Magnetit, Pigeonit und einem SiO2-reichen Glas mit Blase besteht. Diese Einschlüsse sind nicht von Sprüngen umgeben, was es wahrscheinlich macht, dass sie ihre ursprüngliche Zusammensetzung unver?ndert erhalten haben. Erstmals wurden Schmelz-Experimente mit Endtemperaturen von 1150 °C an Nakhla Augiten durchgeführt. In diesen Experimenten schmolz das Glas der Einschlüsse, l?ste die koexistierenden kristallinen Phasen auf und ?nderte dabei seine chemische Zusammensetzung. Das durch Abschrecken dieser Schmelze erzeugte Glas ist ?rmer an SiO2 und Al2O3 und reicher an CaO, FeO und MgO als das ursprüngliche Einschlu?glas. Diese in situ-Analyse erlaubt eine Absch?tzung der ursprünglichen Zusammensetzung einer Schmelze im Gleichgewicht mit Nakhla Augit bei 1150 °C und 1 atm Druck. Einige Eigenschaften von Nakhla, wie das hohe Fe/Mg-Verh?ltnis des Augites, welches nicht im Gleichgewicht mit dem Glas ist, die variablen Alkali-Gehalte und die Na/K-Verh?ltnisse im Glas sind inkompatibel mit dem Standard-Modell für die SNC-Meteorite, welches diese als magmatische Gesteine basaltischer Herkunft sieht. Unsere Ergebnisse weisen auf eine komplexe, m?glicherweise nicht-magmatische Entstehung von Nakhla hin. Sowohl die glasführenden Einschlüsse im Olivin als auch jene im Augit von Nakhla k?nnten Produkte eines heterogenen Aufsammelns von Mineral plus Glas sein. Die Einschlüsse im Augit imitieren zumindest zum Teil Schmelzeinschlüsse. Allerdings sind sie mit ihrem Fe/Mg – Verh?ltnis nicht im Gleichgewicht mit dem Augit und sind auch in ihrer Zusammensetzung zu inhomogen, um für ein m?gliches Mutter-Magma repr?sentativ zu sein.


Received April 10, 2000; revised version accepted October 19, 2000  相似文献   
25.
26.
27.
Zusammenfassung Der Weinsberger Granit, der älieste der moldanubischen Granite Österreichs, ist ein sehr grobkörniger porphyrischer Biotitgranit mit (Volum-%) 35 bis 37% Mikroklin, 33–35% Plagioklas, 19–22% Quarz und 9–13% Biotit. Die Mikrokline sind dicktafelig nach M, erreichen eine Länge von bis zu 18 cm, fübren häufig orientierte Plagioklas- und Biotiteinschlüsse und sind stark perthitisch. Die Zusammensetzung liegt um 80 Gew. % Or, die der entmischten Kalifeldspatphase um 88% Or. Charakteristisch sind noch die hohe Triklinität und der inverse Zonarbau. Die Plagloklase sind wesentlich kleiner, sind selten primär, jedoch immer sekundär verzwillingt und zeigen einen schwachen oszillatorischen oder progressiven Zonarbau. Die durchschnittliche Zusammensetzung liegt zwischen 27 und 31% An. Die Biotite sind rothraun, stark pleochroitisch und durchweg 1 M-Polymorphe. Die Zirkone magmatischen Ursprungs sind rötlich bis undurchsichtig, zonar und sehr groß (bis zu 0·8 mm). In den Randzonen finden sich vom Nebengestein übernommene Zirkone, welche etwas kleiner und farblos sind. Das häufigste Akzessorium ist der Apatit, sehr selten findet sich Magnetit. Sehr nahe am Kontakt tritt als Verunreinigung Almandin und Muskowit auf. Auf Grund der vorliegenden Untersuchung und der im Felde von verschiedenen Autoren und vom Verfasser gemachten Beobachtungen ist die Entstehung des Weinsberger Granites auf magmatische Vorgänge zurückzuführen. Die Intrusion, die wahrscheinlich in engem Zusammenhang mit der Metamorphose des Moldanubikums stand, erfolgte unter Bedingungen, die einem p-H2O von zinka 5000 Bar enlaprechen, also in großer Tiefe und bei relativ niedriger Temperatur.Mit 6 Textabbildungen  相似文献   
28.
Rock 14318 is a complex microbreccia consisting of lithic fragments, chondrules, glass spherules, and glass and mineral fragments that are embedded into a fine-grained, partly glassy matrix. Rock fragmenta, chondrules, and glasses are tightly welded to the matrix and partly recrystallized, indicating a relatively high-temperature agglomeration history. Few lithic fragments have igneous textures; most are miorobreccias that have suffered various degrees of recrystallization before they were embedded into rock 14318. Compositions of lithic fragments, glasses and chondrules, in terms of compositional rock and rock suite equivalents, represent members of the ANT (anorthositic-noritic-troctolite) suite; the alkalic high-alumina basalt (KREEP) group; high-alkali quartz basalt; basalt; and dunite. The polymict nature of many lithic fragments suggests that rook 14318 require at least two, and probably more, impact episodes for its formation. Final agglomeration took place while part of the material was hot, as is indicated by the welded texture, suggesting that the final impact event was a large one, producing a fiery cloud similar to a nuée ardente. The close similarity in texture of lunar rock 14318 to certain polymict-brecciated meteorites such as Siena suggests that meteorites of this type were also formed by complex and successive impact events on the surface of the meteorite parent body, rather than during agglomeration of the parent body.  相似文献   
29.
Abstract– A large number of micrometeorites (MMs) was recovered from glacier deposits located at the north‐eastern passive margin of the Novaya Zemlya glacier sheet. Melted, scoriaceous, and unmelted micrometeorites (UMMs) are present. Unmelted micrometeorites are dominated mostly by chondritic matter, but also a few achondritic MMs are present. Here we report the discovery of four UMMs that, according to their texture, mineralogy, and chemistry, are identified as basaltic breccias. Mineral chemistry and Fe/Mn ratios of two basaltic micrometeorites indicate a possible relationship with eucrites and/or mesosiderites, whereas two others seem to have parents, which appear not to be present in our meteorite collections. The basaltic breccia UMMs constitute 0.5% of the total population of the Novaya Zemlya MM suite. This content should be lowered to 0.25% because the Novaya Zemlya MM collection appears to be biased with carbonaceous UMMs being underrepresented.  相似文献   
30.
Abstract— A devitrified glass inclusion from the Guin (UNGR) iron consists of cryptocrystalline feldspars, pyroxenes, and silica and is rich in SiO2, Al2O3, and Na2O. It contains a rutile grain and is in contact with a large Cl apatite. The latter is very rich in rare earth elements (REEs) (~80 × CI), which display a flat abundance pattern, except for Eu and Yb, which are underabundant. The devitrified glass is very poor in REEs (<0.1 × CI), except for Eu and Yb, which have positive abundance anomalies. Devitrified glass and Cl apatite are out of chemical equilibrium and their complementary REE patterns indicate a genesis via condensation under reducing conditions. Inclusion 1 in the Kodaikanal (IIE) iron consists of glass only, whereas inclusion 2 consists of clinopyroxene, which is partly overgrown by low‐Ca pyroxene, and apatite embedded in devitrified glass. All minerals are euhedral or have skeletal habits indicating crystallization from the liquid precursor of the glass. Pyroxenes and the apatite are rich in trace elements, indicating crystallization from a liquid that had 10–50 × CI abundances of REEs and refractory lithophile elements (RLEs). The co‐existing glass is poor in REEs (~0.1–1 × CI) and, consequently, a liquid of such chemical composition cannot have crystallized the phenocrysts. Glasses have variable chemical compositions but are rich in SiO2, Al2O3, Na2O, and K2O as well as in HFSEs, Be, B, and Rb. The REE abundance patterns are mostly flat, except for the glass‐only inclusion, which has heavy rare earth elements (HREEs) > light rare earth elements (LREEs) and deficits in Eu and Yb—an ultrarefractory pattern. The genetic models suggested so far cannot explain what is observed and, consequently, we offer a new model for silicate inclusion formation in IIE and related irons. Nebular processes and a relationship with E meteorites (Guin) or Ca‐Al‐rich inclusions (CAIs) (Kodaikanal) are indicated. A sequence of condensation (CaS, TiN or refractory pyroxene‐rich liquids) and vapor‐solid elemental exchange can be identified that took place beginning under reducing and ending at oxidizing conditions (phosphate, rutile formation, alkali and Fe2+ metasomatism, metasomatic loss of REEs from glass).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号