首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   9篇
  国内免费   2篇
大气科学   15篇
地球物理   44篇
地质学   75篇
海洋学   27篇
天文学   14篇
自然地理   9篇
  2024年   1篇
  2021年   2篇
  2020年   6篇
  2019年   1篇
  2018年   4篇
  2017年   8篇
  2016年   4篇
  2015年   3篇
  2014年   9篇
  2013年   6篇
  2012年   6篇
  2011年   17篇
  2010年   7篇
  2009年   12篇
  2008年   8篇
  2007年   8篇
  2006年   4篇
  2005年   11篇
  2004年   8篇
  2003年   4篇
  2002年   7篇
  2001年   6篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1986年   2篇
  1984年   1篇
  1982年   3篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1971年   1篇
  1970年   2篇
  1941年   2篇
排序方式: 共有184条查询结果,搜索用时 46 毫秒
21.
We review the presence and signatures of the non-equilibrium processes, both non-Maxwellian distributions and non-equilibrium ionization, in the solar transition region, corona, solar wind, and flares. Basic properties of the non-Maxwellian distributions are described together with their influence on the heat flux as well as on the rates of individual collisional processes and the resulting optically thin synthetic spectra. Constraints on the presence of high-energy electrons from observations are reviewed, including positive detection of non-Maxwellian distributions in the solar corona, transition region, flares, and wind. Occurrence of non-equilibrium ionization is reviewed as well, especially in connection to hydrodynamic and generalized collisional-radiative modeling. Predicted spectroscopic signatures of non-equilibrium ionization depending on the assumed plasma conditions are summarized. Finally, we discuss the future remote-sensing instrumentation that can be used for the detection of these non-equilibrium phenomena in various spectral ranges.  相似文献   
22.
23.
Biostratigraphic and palaeomagnetic research has been carried out on selected profiles in North-Western Germany and Central Italy in order to correlate Plio-Pleistocene sections.Around the Réunion subchronozone, vegetation in the Valle Ricca was dominated by a mountain forest type pointing to cool climatic conditions. In the Lower Rhine Basin vegetation had a slightly warmer character, but was also dominated strongly by a mountain type of forest vegetation, characteristic of cooler summers and higher precipitation than at present.Two warmer periods have been determined in the Central Italian profiles; the youngest around the Olduvai reversal, should correspond to the youngest Tiglian beds of the Lower Rhine Basin.Deposits older than the Réunion subzone have not been found in the Valle Ricca. In the Lower Rhine Basin, on the other hand, the Gauss-Matuyama boundary is located between the uppermost Pliocene, the Reuverian C and the Praetiglian.  相似文献   
24.
25.
Nocturnal convection, originating in a well-mixed marine cloud-topped boundary layer, advected onshore, was observed using a Doppler sodar on the Tyrrhenian coast in Italy. The horizontal and vertical dimensions of the downdrafts were evaluated. The oscillation frequency triggered by the downdrafts at the inversion layer, derived from the harmonic analysis of the sodar measured vertical velocity (w), is compared with the Brunt-Vaisala frequency, obtained from the rawinsonde temperature profile. A similarity function for the 2w vertical profile was used to fit the sodar experimental data and to retrieve the depth of the mixing layer and the sensible heat flux at the top of the cloud layer. The results are in agreement with the convection layer depth observed in the sodar echoes facsimile record, and with the energy budget evaluated at the top of the cloud layer using the rawinsonde profiles.  相似文献   
26.
Summer boundary-layer height at the plateau site of Dome’C,antarctica   总被引:1,自引:1,他引:0  
Measurements of the mean and turbulent structure of the planetary boundary layer using a sodar and a sonic anemometer, and radiative measurements using a radiometer, were carried out in the summer of 1999–2000 at the Antarctic plateau station of Dome C during a two-month period. At Dome C strong ground-based inversions dominate for most of the year. However, in spite of the low surface temperatures (between −50 and −20 °C), and the surface always covered by snow and ice, a regular daytime boundary-layer evolution, similar to that observed at mid-latitudes, was observed during summertime. The mixed-layer height generally reaches 200–300 m at 1300–1400 LST in high summer (late December, early January); late in the summer (end of January to February), as the solar elevation decreases, it reduces to 100–200 m. A comparison between the mixed-layer height estimated from sodar measurements and that calculated using a mixed-layer growth model shows a rather satisfactory agreement if we assign a value of 0.01–0.02 m s−1 to the subsidence velocity at the top of the mixed layer, and a value of 0.003–0.004 K m−1 to the potential temperature gradient above the mixed layer.  相似文献   
27.
The ecosystem services provided by forests modulate runoff generation processes, nutrient cycling and water and energy exchange between soils, vegetation and atmosphere. Increasing atmospheric CO2 affects many linked aspects of forest and catchment function in ways we do not adequately understand. Global levels of atmospheric CO2 will be around 40% higher in 2050 than current levels, yet estimates of how water and solute fluxes in forested catchments will respond to increased CO2 are highly uncertain. The Free Air CO2 Enrichment (FACE) facility of the University of Birmingham's Institute of Forest Research (BIFoR) is the only FACE in mature deciduous forest. The site specializes in fundamental studies of the response of whole ecosystem patches of mature, deciduous, temperate woodland to elevated CO2 (eCO2). Here, we describe a dataset of hydrological parameters – seven weather parameters at each of three heights and four locations, shallow soil moisture and temperature, stream hydrology and CO2 enrichment – retrieved at high frequency from the BIFoR FACE catchment.  相似文献   
28.
The compositional variability of the lithospheric mantle at extensional settings is largely caused by the reactive percolation of uprising melts in the thermal boundary layer and in lithospheric environments.The Alpine-Apennine(A-A)ophiolites are predominantly constituted by mantle peridotites and are widely thought to represent analogs of the oceanic lithosphere formed at ocean/continent transition and slow-to ultraslow-spreading settings.Structural and geochemical studies on the A-A mantle peridotites have revealed that they preserve significant compositional and isotopic heterogeneity at variable scale,reflecting a long-lived multi-stage melt migration,intrusion and melt-rock interaction history,occurred at different lithospheric depths during progressive uplift.The A-A mantle peridotites thus constitute a unique window on mantle dynamics and lithosphere-asthenosphere interactions in very slow spreading environments.In this work,we review field,microstructural and chemical-isotopic evidence on the major stages of melt percolation and melt-rock interaction recorded by the A-A peridotites and discuss their consequences in creating chemical-isotopic heterogeneities at variable scales and enhancing weakening and deformation of the extending mantle.Focus will be on three most important stages:(i)old(pre-Jurassic)pyroxenite emplacement,and the significant isotopic modification induced in the host mantle by pyroxenite-derived melts,(ii)melt-peridotite interactions during Jurassic mantle exhumation,i.e.the open-system reactive porous flow at spinel facies depths causing bulk depletion(origin of reactive harzburgites and dunites),and the shallower melt impregnation which originated plagioclase-rich peridotites and an overall mantle refertilization.We infer that migrating melts largely originated as shallow,variably depleted,melt fractions,and acquired Si-rich composition by reactive dissolution of mantle pyroxenes during upward migration.Such melt-rock reaction processes share significant similarities with those documented in modern oceanic peridotites from slow-to ultraslow-spreading environments and track the progressive exhumation of large mantle sectors at shallow depths in oceanic settings where a thicker thermal boundary layer exists,as a consequence of slow-spreading rate.  相似文献   
29.
Strong ground motions recorded on the sedimentary deposits of the Po River alluvial plain during the Emilia (Northern Italy) Mw 5.7 earthquake of May 29, 2012 are used to assess the vertical profile of shear-wave velocity above the limestone basement. Data were collected by a linear array installed for site effect studies after the Mw 5.9 mainshock of May 20, 2012. The array stations, equipped with both strong and weak motion sensors, are aligned in the South–North direction, at distances ranging from 1 to 26 km from the epicenter. The vertical components of ground motion show very distinctive, large-amplitude, low-frequency dispersive wave trains. Wavelet analysis yields group-velocity dispersion curve in the 0.2–0.7 Hz frequency band. The availability of a long ambient noise record allows estimates of the site resonance frequency along with its stability among stations. The joint inversion of dispersion of surface waves and ellipticity curves derived from ambient noise H/V allows extending investigations down to the sediment-limestone interface, at a depth of about 5,000 m. Our results add new information about the velocity structure at a scale that is intermediate between the local scale already investigated by other authors with small-aperture arrays using ambient noise and the regional scale inferred from modeling of seismogram waveforms recorded at hundreds of kilometers from the source.  相似文献   
30.
The Northern Apennines provide an example of long‐term deep‐water sedimentation in an underfilled pro‐foreland basin first linked to an advancing orogenic wedge and then to a retreating subduction zone during slab rollback. New palaeobathymetric and geohistory analyses of turbidite systems that accumulated in the foredeep during the Oligocene‐Miocene are used to unravel the basin subsidence history during this geodynamic change, and to investigate how it interplayed with sediment supply and basin tectonics in controlling foredeep filling. The results show an estimated ca. 2 km decrease in palaeowater depth at ca. 17 Ma. Moreover, a change in basin subsidence is documented during Langhian time, with an average decompacted subsidence rate, during individual depocentre life, that increased from <0.3 to 0.4–0.6 mm y?1, together with the appearance of a syndepositional backstripped subsidence bracketed between 0.1 and 0.2 mm y?1. This change prevented the basin from complete filling during late Miocene and is interpreted as the foredeep response to initial rollback of the downgoing Adriatic slab. Thus, the Northern Apennine system provides an example of a pro‐foreland basin that experienced both a slow‐ and high‐subsidence regime as a consequence of the advancing then retreating evolution of the collisional system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号