首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   1篇
测绘学   1篇
地球物理   4篇
地质学   17篇
海洋学   2篇
自然地理   5篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2015年   3篇
  2014年   1篇
  2013年   4篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
21.
Face stability analysis of tunnels excavated under pressurized shields is a major issue in real tunnelling projects. Most of the failure mechanisms used for the stability analysis of tunnels in purely cohesive soils were derived from rigid block failure mechanisms that were developed for frictional soils, by imposing a null friction angle. For a purely cohesive soil, this kind of mechanism is quite far from the actual velocity field. This paper aims at proposing two new continuous velocity fields for both collapse and blowout of an air‐pressurized tunnel face. These velocity fields are much more consistent with the actual failures observed in undrained clays. They are based on the normality condition, which states that any plastic deformation in a purely cohesive soil develops without any volume change. The numerical results have shown that the proposed velocity fields significantly improve the best existing bounds for collapse pressures and that their results compare reasonably well with the collapse and blowout pressures provided by a commercial finite difference software, for a much smaller computational cost. A design chart is provided for practical use in geotechnical engineering. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
22.
Probabilistic analyses of tunneling-induced ground movements   总被引:1,自引:0,他引:1  
Tunneling-induced ground movements are investigated in this paper using both deterministic and probabilistic analyses. The deterministic model is based on three-dimensional (3D) numerical simulations using the commercial code FLAC3D. This model attempts to reproduce some major phenomena during a typical slurry-shield tunnel excavation (ground movements due to the applied face pressure, the overcutting, the shield conicity, the annular void behind the shield, and the grout injection in this void). Moreover, the model provides useful information about the nature and magnitude of the soil movements at the ground surface. A probabilistic study is then undertaken in order to evaluate the impact of the variability of several input variables on the ground movements. An efficient probabilistic method called CSRSM is used to assess this uncertainty propagation. In a last section, the output variables of the model are linked to failure criteria. This allows one to determine probabilities of failure, depending on the probabilistic properties of the input variables and on the admissible threshold of each criterion.  相似文献   
23.
24.
The presence of two regional seismic networks in southeastern France provides us high-quality data to investigate upper mantle flow by measuring the splitting of teleseismic shear waves induced by seismic anisotropy. The 10 three-component and broadband stations installed in Corsica, Provence, and western Alps efficiently complete the geographic coverage of anisotropy measurements performed in southern France using temporary experiments deployed on geodynamic targets such as the Pyrenees and the Massif Central. Teleseismic shear waves (mainly SKS and SKKS) are used to determine the splitting parameters: the fast polarization direction and the delay time. Delay times ranging between 1.0 and 1.5 s have been observed at most sites, but some larger delay times, above 2.0 s, have been observed at some stations, such as in northern Alps or Corsica, suggesting the presence of high strain zones in the upper mantle. The azimuths of the fast split shear waves define a simple and smooth pattern, trending homogeneously WNW–ESE in the Nice area and progressively rotating to NW–SE and to NS for stations located further North in the Alps. This pattern is in continuity with the measurements performed in the southern Massif Central and could be related to a large asthenospheric flow induced by the rotation of the Corsica–Sardinia lithospheric block and the retreat of the Apenninic slab. We show that seismic anisotropy nicely maps the route of the slab from the initial rifting phase along the Gulf of Lion (30–22 Ma) to the drifting of the Corsica–Sardinia lithospheric block accompanied by the creation of new oceanic lithosphere in the Liguro–Provençal basin (22–17 Ma). In the external and internal Alps, the pattern of the azimuth of the fast split waves follows the bend of the alpine arc. We propose that the mantle flow beneath this area could be influenced or perhaps controlled by the Alpine deep penetrative structures and that the Alpine lithospheric roots may have deflected part of the horizontal asthenospheric flow around its southernmost tip.  相似文献   
25.
In the La Serre horst of the Alpine foreland, the pre-Triassic La Serre median fault zone separates a Late Devonian–Early Carboniferous granite from an ignimbrite of unknown age and from Permian deposits. Motion along this fault zone took place first in ductile conditions and then evolved in brittle conditions. Both ductile and brittle shear criteria indicate a top-NE normal-dextral displacement. Similar motions are reported along faults bounding Late Palaeozoic intramontane coal basins located in the Massif Central and correspond to a widespread NE–SW Late to Post-Orogenic extension that affected the Variscan basement during Late Carboniferous to Early Permian times. To cite this article: G. Coromina, O. Fabbri, C. R. Geoscience 336 (2004).  相似文献   
26.
Pyroclastic currents are catastrophic flows of gas and particles triggered by explosive volcanic eruptions. For much of their dynamics, they behave as particulate density currents and share similarities with turbidity currents. Pyroclastic currents occasionally deposit dune bedforms with peculiar lamination patterns, from what is thought to represent the dilute low concentration and fluid‐turbulence supported end member of the pyroclastic currents. This article presents a high resolution dataset of sediment plates (lacquer peels) with several closely spaced lateral profiles representing sections through single pyroclastic bedforms from the August 2006 eruption of Tungurahua (Ecuador). Most of the sedimentary features contain backset bedding and preferential stoss‐face deposition. From the ripple scale (a few centimetres) to the largest dune bedform scale (several metres in length), similar patterns of erosive‐based backset beds are evidenced. Recurrent trains of sub‐vertical truncations on the stoss side of structures reshape and steepen the bedforms. In contrast, sporadic coarse‐grained lenses and lensoidal layers flatten bedforms by filling troughs. The coarsest (clasts up to 10 cm), least sorted and massive structures still exhibit lineation patterns that follow the general backset bedding trend. The stratal architecture exhibits strong lateral variations within tens of centimetres, with very local truncations both in flow‐perpendicular and flow‐parallel directions. This study infers that the sedimentary patterns of bedforms result from four formation mechanisms: (i) differential draping; (ii) slope‐influenced saltation; (iii) truncative bursts; and (iv) granular‐based events. Whereas most of the literature makes a straightforward link between backset bedding and Froude‐supercritical flows, this interpretation is reconsidered here. Indeed, features that would be diagnostic of subcritical dunes, antidunes and ‘chute and pools’ can be found on the same horizon and in a single bedform, only laterally separated by short distances (tens of centimetres). These data stress the influence of the pulsating and highly turbulent nature of the currents and the possible role of coherent flow structures such as Görtler vortices. Backset bedding is interpreted here as a consequence of a very high sedimentation environment of weak and waning currents that interact with the pre‐existing morphology. Quantification of near‐bed flow velocities is made via comparison with wind tunnel experiments. It is estimated that shear velocities of ca 0·30 m.s?1 (equivalent to pure wind velocity of 6 to 8 m.s?1 at 10 cm above the bed) could emplace the constructive bedsets, whereas the truncative phases would result from bursts with impacting wind velocities of at least 30 to 40 m.s?1.  相似文献   
27.
A miniaturized Mössbauer spectrometer, adapted to the Earth’s conditions from the instrument developed for Mars space missions, has been used for the first time to study in situ variations with depth and transformations with time of iron minerals in a gleysol. The instrument is set into a PVC tube and can be moved up and down precisely (±1 mm) at the desired depth. Mössbauer spectra were obtained from 15 to 106 cm depth and repeated exactly at the same point at different times to follow mineralogical transformations with time. X-ray diffraction (XRD) and selective extraction techniques were performed on soil samples. The piezometric level of the water table was measured and the composition of the soil solution was monitored in situ and continuously, with a multiparametric and automatic probe. All the Mössbauer spectra obtained are characteristic of Fe(II)-Fe(III) green rust-fougerite, a natural mineral of the meixnerite group, that is, whose structural formula is: [Fe1 − xII Mgy FexIII (OH)2+2y]x+[xA, mH2O]x, where x is the ratio Fe3+/Fetot. and A the intercalated anion. The name of fougerite has been formally approved by the Commission on New Minerals and Mineral Names of IMA (number 2003-057), on January 29, 2004. No other iron phases have been found by this way or by XRD. About 90% of total iron is extractible by dithionite-citrate-bicarbonate, and 60% by citratebicarbonate. In the horizons showing oximorphic properties that are in the upper part of the studied soil profile, x ratio in fougerite, deduced from Mössbauer spectra, is approximately 2/3. In the deepest horizons that show reductomorphic properties, x ratio is only 1/3. Fast mineralogical transformations were observed at well-defined points in soil, as evidenced by x ratio variations observed when Mössbauer spectra were acquired at different times at the same depth. Variations of the level of the water table and of pe and pH of the soil solution were simultaneously observed and could explain these mineralogical transformations. A ternary solid solution model previously proposed for OH-fougerite has been extended to chloride, sulphate, and carbonate green rusts to estimate the Gibbs free energies of formation of fougerite, providing for possible anions other than OH in the interlayer and for Mg substitution. Soil solutions appear as largely oversaturated with respect to OH-fougerite, either oversaturated or undersaturated to “carbonate-fougerite” and “sulphate-fougerite”, and largely undersaturated with respect to “chloro-fougerite”. Fougerite forms most likely from oversaturated solutions by coprecipitation of Fe3+ with Fe2+ and Mg2+. Oxidation and reduction are driven by pH and pe variations, with both long timescale variations and short duration events. Exactly as synthetic green rusts are very reactive compounds in the laboratory, fougerite is thus a very reactive mineral and readily forms, dissolves, or evolves in soils.  相似文献   
28.
Fougerite is a new iron oxide, a mixed M(II)–M(III) hydroxide, a member of the green rust group. Its structure consists of a brucitic layer of Fe(III)–Fe(II)–Mg(II), where the excess of the positive charge due to Fe3+ is compensated in the interlayer by anions. The limits of composition are structurally and geochemically constrained, and the stabilities of the mineral and green rusts are obtained by a thermodynamic model of a regular solid solution, for different compensating anions and for any allowed composition of the brucitic layer.  相似文献   
29.
We present a regional surface waveform tomography of the Pacific upper mantle, obtained using an automated multimode surface waveform inversion technique on fundamental and higher mode Rayleigh waves, to constrain the   VSV   structure down to ∼400 km depth. We have improved on previous implementations of this technique by robustly accounting for the effects of uncertainties in earthquake source parameters in the tomographic inversion. We have furthermore improved path coverage in the South Pacific region by including Rayleigh wave observations from the French Polynesian Pacific Lithosphere and Upper Mantle Experiment deployment. This improvement has led to imaging of vertical low-velocity structures associated with hotspots within the South Pacific Super-Swell region. We have produced an age-dependent average cross-section for the Pacific Ocean lithosphere and found that the increase in   VSV   with age is broadly compatible with a half-space cooling model of oceanic lithosphere formation. We cannot confirm evidence for a Pacific-wide reheating event. Our synthetic tests show that detailed interpretation of average   VSV   trends across the Pacific Ocean may be misleading unless lateral resolution and amplitude recovery are uniform across the region, a condition that is difficult to achieve in such a large oceanic basin with current seismic stations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号