首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51944篇
  免费   775篇
  国内免费   496篇
测绘学   1128篇
大气科学   3882篇
地球物理   10384篇
地质学   19248篇
海洋学   4484篇
天文学   11404篇
综合类   106篇
自然地理   2579篇
  2022年   322篇
  2021年   559篇
  2020年   565篇
  2019年   643篇
  2018年   1389篇
  2017年   1315篇
  2016年   1525篇
  2015年   786篇
  2014年   1394篇
  2013年   2604篇
  2012年   1591篇
  2011年   2043篇
  2010年   1874篇
  2009年   2363篇
  2008年   2030篇
  2007年   2090篇
  2006年   2039篇
  2005年   1383篇
  2004年   1332篇
  2003年   1355篇
  2002年   1365篇
  2001年   1211篇
  2000年   1150篇
  1999年   948篇
  1998年   904篇
  1997年   940篇
  1996年   811篇
  1995年   772篇
  1994年   688篇
  1993年   585篇
  1992年   604篇
  1991年   579篇
  1990年   598篇
  1989年   570篇
  1988年   518篇
  1987年   631篇
  1986年   584篇
  1985年   651篇
  1984年   738篇
  1983年   738篇
  1982年   674篇
  1981年   648篇
  1980年   595篇
  1979年   597篇
  1978年   586篇
  1977年   512篇
  1976年   460篇
  1975年   466篇
  1974年   511篇
  1973年   533篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
993.
994.
The equation for the two-particles cosmic-ray distribution function is derived by means of the Boltzmann kinetic equation averaging. This equation is valid for arbitrary ratio of regular and random parts of the magnetic field. For small energy particles the guiding-center approximation is used. On the basis of the derived equation the dependence between power spectra of cosmic-ray intensity and random magnetic field is obtained. If power spectra are degree functions for high energy particles ( 10 GeV nucleon–1), then the spectral exponent of magnetic field lies between and –2, where is the spectral exponent of cosmic-ray power spectra. The experimental data concerning moderate energy particles are in accordance with =, which demonstrates that the magnetic fluctuations are isotropic or cosmic-ray space gradient is small near the Earth orbit.  相似文献   
995.
On three nights in February 1976 we carried out polarimetric measurements, in V, of the short periodic eclipsing binary XY UMa, covering a complete cycle. The results are as follows:
  1. Within all phase intervals the linear polarization does not exceed 0.1%.
  2. In the phase range 0 p .95–1 p .35 the scatter of the Stokes parametersQ andU is about twice that within the phase interval 0 p .35–0 p .95.
  3. A periodogram analysis of these data revealed a period of 21000 s, which is equal to half the orbital periodP o=0d.47899 within 1.5%.
From these we derive the conclusions that no circumstellar envelope can be made responsible for the observed long-term changes of the light curve and system brightness, supporting the earlier spectroscopic finding. The different scatter of the Stokes parameters at different phase intervals and theP o/2 periodicity are in favor of the star spot model for XY UMa proposed by one of the authors (E. G.).  相似文献   
996.
An investigation of low-resolution ratio spectra of Jupiter, Saturn, and Titan in the region 5400–6500 Å has permitted new evaluations of ammonia absorption bands. The distribution of ammonia over the disk of Jupiter is very inhomogeneous. The carbon-to-nitrogen ratio is distinctly different from the solar value, but this is probably a result of uneven mixing of methane and ammonia, as suggested previously by Kuiper, rather than a compositional anomaly. The abundance of ammonia on Saturn also shows spatial variations, but appears constant in time over a 3-yr period. Two weak, unidentified absorptions were discovered in the red region of Titan's spectrum, in the absence of any detectable ammonia. The new upper limit is ηN < 120 cm-am.  相似文献   
997.
Various estimates for the optical thickness of the Cassini division are studied in order to explain and eliminate the discrepancies between them. An analysis of dark-side observations and a theoretical study based on the behavior of collisions suggest that the optical thickness of the Cassini division is not constant, but fluctuates in the range of 10?4–10?3. The nonzero brightness in reflected light is caused either by stray light or by narrow optically thick ringlets inside the Cassini division.  相似文献   
998.
H. Jay Melosh 《Icarus》1977,31(2):221-243
Mercury, the Moon, and many large satellites of the major planets have been tidally despun from an initially faster rotation. These bodies probably possessed equatorial bulges which relaxed as they lost their spin. An analysis of the stresses induced in an elastic shell by the relaxation of an equatorial bulge indicates that differential stresses may reach a few kilobars and that the tectonic pattern developed depends mainly upon the shell thickness. In every model studied the azimuthal stress σ?? is larger (more compressive) than the meridional stress σθθ. For a thin elastic shell (thickness less than one-twentieth of the planet's radius) the zone from the equator to 48° latitude is characterized by strike-slip faulting. Poleward of this, normal faults and graben trending east-west are expected. Thicker elastic shells acquire an equatorial belt of thrust faults with east-west throw and rough north-south trends. These tectonic styles may be modified by a small (0.05-0.1%) radial expansion or contraction. Expansion shifts the polar normal faulting province toward the equator, while contraction shifts the equatorial provinces poleward. These patterns are not substantially altered by plastic yielding of the shell, although the equatorial thrust fault province is suppressed by strike-slip faulting until strike-slip faults occur poleward of 64.8° latitude. We conclude that there are many tectonic patterns consistent with despinning and radial contraction or expansion, but they must all be consistent with σ?? > σθθ. These results also indicate that the polar regions of a despun planet are of particular interest in deciding whether a given lineament system is due to stresses induced by the relaxation of the planet's equatorial bulge.  相似文献   
999.
The aim of the present paper is to find the eclipse perturbations, in the frequency-domain, of close eclipsing systems exhibiting partial eclipses.After a brief introduction, in Section 2 we shall deal with the evaluation of thea n (l) integrals for partial eclipses and give them in terms ofa 0 0 ,a 0 0 (of the associated -functions) and integrals; while Section 3 gives the eclipse perturbations arising from the tidal and rotational distortion of the two components. The are given for uniformly bright discs (h=1) as well as for linear and quadratic limb-darkening (h=2 and 3, respectively).Finally, Section 4 gives a brief discussion of the results and the way in which they can be applied to practical cases.  相似文献   
1000.
The solar magnetic fields observed in active regions and their residues are thought to be parts of toroidal field systems renewed every 11-yr cycle from a poloidal field. The latter may be either a reversing (dynamo) field or a non-reversing, primordial field. The latter view was held for some 70 yr, but the apparent reversals of the polar-cap fields in 1957–8 and the development of dynamo theory brought wide acceptance of the former. Here we consider evidence for and against each model, with these conclusions. (i) Several errors combine so that the non-spot measurements of gross magnetic fluxes are too low by factors of 10 or more. A permanent field of 2 G or more might remain unobserved. (ii) Measurements of average magnetic field strength are subject to various large errors. In particular, the reported reversals of the polar-cap fields are better explained in terms of tilts of toroidal field residues. (iii) Observations of new-cycle magnetic fields among old-cycle fields, of the gradual fading away of large unipolar regions, and the ubiquitous jumble of very small magnetic loop structures appear explicable only in terms of a primordial field. (iv) More positive evidence of a primordial field is found in the extreme order, symmetry and long-term stability of the polar cap streamers or rays. During one eclipse (1954) the primordial field was seen in the absence of all toroidal field residues. (v) A form of reversal of the interplanetary magnetic field is re-interpreted and shown to be consistent with a primordial, but not a dynamo, field. (vi) A test for a primordial field is that the fields below coronal holes should tend to be positive (outwards) in the northern hemisphere and negative in the southern hemisphere. (vii) Further evidence may be available by studying various plasma structures below coronal holes. An urgent requirement is a study of fibrils, faculae, macrospicules and rays in these regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号