首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
测绘学   2篇
大气科学   1篇
地球物理   1篇
地质学   26篇
自然地理   9篇
  2018年   1篇
  2013年   3篇
  2012年   1篇
  2009年   3篇
  2008年   1篇
  2006年   2篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1979年   1篇
  1975年   1篇
  1972年   2篇
  1971年   1篇
排序方式: 共有39条查询结果,搜索用时 31 毫秒
1.
Distribution of Ferric Iron in some Upper-Mantle Assemblages   总被引:16,自引:5,他引:11  
The distribution of ferric iron among the phases of upper-mantlerocks, as a function of pressure (P), temperature (T) and bulkcomposition, has been studied using 57Fe Mssbauer spectroscopyto determine the Fe3+/Fe ratios of mineral separates from 35peridotite and pyroxenite samples. The whole-rock Fe3+ complementof a peridotite is typically shared approximately evenly amongthe major anhydrous phases (spinel and/or garnet, orthopyroxeneand clinopyroxene), with the important exception of olivine,which contains negligible Fe3+. Whole-rock Fe3+ contents areindependent of the T and P of equilibration of the rock, butshow a well-defined simple inverse correlation with the degreeof depletion in a basaltic component. Fe3+ in spinel and inboth pyroxenes from the spinel Iherzolite facies shows a positivecorrelation with temperature, presumably owing to the decreasein the modal abundance of spinel. In garnet peridotites, theFe3+ in garnet increases markedly with increasing T and P, whereasthat in clinopyroxene remains approximately constant. The complexnature of the partitioning of Fe3+ between mantle phases resultsin complicated patterns of the activities of the Fe3+ -bearingcomponents, and thus in calculated equilibrium fO2, which showlittle correlation with whole-rock Fe3+ or degree of depletion.Whether Fe3+ is taken into account or ignored in calculatingmineral formulae for geothermobarometry can have major effectson the resulting calculated T and P. For Fe-Mg exchange geothermometers,large errors must occur when applied to samples more oxidizedor reduced than the experimental calibrations, whose fO2 conditionsare largely unknown. Two-pyroxene thermometry is more immuneto this problem, and probably provides the most reliable P—Testimates. Accordingly, the convergence of P—T valuesderived for a given garnet peridotite assemblage may not necessarilybe indicative of mineral equilibrium. The prospects for thecalculation of accurate Fe3+ contents from electron microprobeanalyses by assuming stoichiometry are good for spinel, uncertainfor garnet, and distinctly poor for pyroxenes. KEY WORDS: mantle; oxidation; partitioning; peridotite; thermobarometry *Corresponding author. Present address: School of Earth and Ocean Sciences, University of Victoria, P.O. Box 1700, Victoria, B.C., V8W 2Y2, Canada  相似文献   
2.
The solubility of sulfur as S2– has been experimentallydetermined for 19 silicate melt compositions in the system CaO–MgO–Al2O3–SiO2(CMAS)± TiO2 ± FeO, at 1400°C and 1 bar, using CO–CO2–SO2gas mixtures to vary oxygen fugacity (fO2) and sulfur fugacity(fS2). For all compositions, the S solubility is confirmed tobe proportional to (fS2/fO2)1/2, allowing the definition ofthe sulfide capacity (CS) of a silicate melt as CS = [S](fO2/fS2)1/2.Additional experiments covering over 150 melt compositions,including some with Na and K, were then used to determine CSas a function of melt composition at 1400°C. The resultswere fitted to the equation  相似文献   
3.
Detailed sampling and analysis of Jurassic pelagic limestones and marls from Italy, Hungary and Switzerland have enabled construction of an isotope stratigraphy across the Pliensbachian-Toarcian boundary with resolution to the zonal level. The oxygen-isotope record is unremarkable. The carbon isotopes, however, show two positive excursions: one, relatively minor, during the Pliensbachian, margaritatus Zone, subnodosus Subzone, the other, more major, during the Toarcian. early falciferum Zone, where a maximum δ13C value of 4·52%PDB is attained. These intervals are known to be favoured periods of organic-rich sedimentation in diverse parts of the globe and the isotopic excursions are interpreted as a response to abnormally high rates of storage of organic carbon in the sedimentary record. A comparable phenomenon has been documented from the Cenomanian-Turonian boundary in the Cretaceous where it has been referred to the influence of an ‘Oceanic Anoxic Event’. Some Italian sections spanning this Lower Jurassic interval contain organic-rich shales in the falciferum Zone; the isotopic signatures from their included, locally manganiferous carbonate betray a considerable diagenetic overprint and they cannot therefore be incorporated in a composite isotopic curve. Carbon isotopes from the organic carbon itself are extremely negative, falling to –33δPDB and, in one section examined in detail, correlate with the calcium-carbonate content of the shales; they may reflect a partial change to a non-calcified planktonic biota during deposition of this lime-poor interval, possibly responding to upwelling and increased fertility of near-surface waters. The onset of upwelling may have been as early as spinatum-tenuicostatum Zone time, that is, at the Pliensbachian-Toarcian boundary.  相似文献   
4.
Tourist Geology     
  相似文献   
5.
The Toarcian oceanic anoxic event ( ca 183 Ma) coincides with a global perturbation marked by enhanced organic carbon burial and a general decrease in calcium carbonate production, probably triggered by changes in the composition of marine plankton and elevated carbon dioxide levels in the atmosphere. This study is based on high-resolution sampling of two stratigraphic successions, located in Valdorbia (Umbria–Marche Apennines) and Monte Mangart (Julian Alps), Italy, which represent expressions of the Toarcian oceanic anoxic event in deep-water pelagic sediments. These successions are characterized by the occurrence of black shales showing relatively low total organic carbon concentrations (compared with coeval strata in Northern Europe), generally < 2%, and low hydrogen indices. On this basis, they are similar to other Toarcian black shales described from the Tethyan region. The positive and negative carbon-isotope records from the two localities permit a high-resolution correlation such that ammonite biostratigraphy information from Valdorbia can be transferred to those parts of the Monte Mangart section that lack these fossils. Spectral analyses of δ13Corg values and of CaCO3 percentages from the sedimentary records of both the Valdorbia and Monte Mangart sections reveal a strong cyclic pattern, best interpreted as an eccentricity signal which hence implies a duration of ca 500 kyr for the negative carbon-isotope excursion. Based on the carbon-isotope curves obtained, the high-resolution correlation between the Italian successions and a section in Yorkshire (Northern Europe) confirms the supposition that the apparent mismatch between the dating of the Toarcian oceanic anoxic event in the Boreal and Tethyan realms is an artefact of biostratigraphy.  相似文献   
6.
7.
Abstract The Deer Lake Basin is an entirely non-marine basin associated with the Cabot fault zone. Structural and stratigraphic evidence strongly suggest dextral strike-slip movements along the fault zone during Tournaisian-Visean time. Two elongated, end-on structural blocks (probable positive flower structures) contain fold axes and second-order faults oriented obliquely to fault traces bounding the blocks, in a manner implying dextral movements. In one part of the basin, the stratigraphic thickness of a long homoclinal section of later basin-fill sediment (Deer Lake Group) greatly exceeds the suggested depth to basement based on gravity measurements, a situation common to strike-slip basins. Formations representing basin fill can be arranged into megasequences (from oldest to youngest: Anguille Group, Wetstone Point and Wigwam Brook Formations, Deer Lake Group, Howley Formation) corresponding to lateral growth stages of the basin. Gravity, magnetic, and seismic data show that depths to basement on either side of the end-on flower structures are comparable, so that the youngest strata in the basin (Howley Formation) are not underlain by earlier basin fill. These geophysical data, therefore, corroborate the geological conclusion of onlapping stratigraphic relations. The geophysical data suggest participation of basement in Carboniferous gravity faulting and show the location of the subsurface extension of the Taylors Brook Fault in the western part of the Deer Lake Basin. Thermal maturation of the Anguille and Deer Lake Groups, as measured by vitrinite reflectance, clay mineral assemblages, illite crystallinity, and Rock-Eval pyrolysis, indicate a much higher level of maturation for the Anguille than for the Deer Lake Group. Palaeotemperatures for the Anguille and Deer Lake Groups are estimated to be around 200 and 100oC, respectively, suggesting that Anguille Group rocks are overmature whereas Deer Lake Group strata are within the oil-generating window. Onlapping stratigraphic relations and areally homogeneous time/temperature effects, however, have created a situation in which the Deer Lake Group and Howley Formation have similar maturation levels.  相似文献   
8.
Oxygen isotope analyses have been obtained on rocks and coexistingminerals from the Tertiary stocks, ring-dikes, and cone-sheetsin Ardnamurchan (18 samples), Skye (41 samples), and Mull (18samples); these include a few samples of the plateau basaltcountry rocks. Almost all of the rocks in the vicinity of thecentral ring complexes (within 2 mi. of an intrusive contact)are strongly depleted in O18 relative to ‘normal’igneous rocks from other areas. The rocks in Skye ( 150 sq.mi.) and Mull ( 150 sq. mi.) have suffered an overall O18 depletionof about 6 to 7 per mil, and those in Ardnamurchan ( 30 sq.mi.) about 3 to 6 per mil. These data indicate that very large hydrothermal convectionsystems involving heated low. O18 meteoric ground waters wereestablished in these areas at the time of igneous intrusion.The heated ground waters exchanged with the gabbros, granities,and basaltic lavas, locaclly lowering their O18/ O16 rationsby at least 12 per mil. Much, if not all, of this exchange occurredafter crystallization of a given igneous rock was essentiallycomplete, inasmuch as feldspars invariably have undergone muchmore depletion in O18 than has coexisting quartz or pyroxen.The meteoric-hydrothermal process and the presence of an aqueousgas phase may possibly be responsible for the widespread epidote-chloritealteration, the turbid or cloudy feldspars, the abundant feldspathicveins, the felsitic and granophyric textures, the miaroliticcavities, and much of the explosive volcanic activity and brecciationthat are found in these areas.  相似文献   
9.
In August 1994, Britain's top science journal, Nature, announced that a team of scientists working at the University of Cambridge had found Europe's oldest rocks at a remote location near to Gruinard Bay in the Scottish Highlands. They reported ancient volcanic rocks with an age of 3300 million years. This was more than 300 million years older than any age previously measured on rocks in the British Isles and between 100 and 200 million years older than any rocks known in Europe. The discovery of itself is in many ways unremarkable, for much older rocks are known from ancient continental shield areas in Canada, Australia and Greenland. What was important was that the reported age did not agree with any of the other measured ages known within the British Isles. This was highlighted in a comment in the same issue of Nature, which suggested that the new data were so important that they require a massive revision of our views on the earliest history of the British Isles. For other scientists, however, the conflict between these new data and previously reported ages began to raise questions about the methods employed in dating the 'oldest rocks'.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号